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Abstract

Brown, Jeffrey M., Ph.D., Department of Mechanical and Materials Engineering, Wright
State University, 2008. Reduced Order Modeling Methods for Turbomachinery Design.

Design of structural components is constrained by both iteration time and prediction

uncertainty. Iteration time refers to the computation time each simulation requires and

controls how much design space can be explored given a f xed period. A comprehen-

sive search of the space leads to more optimum designs. Prediction uncertainty refers to

both irreducible uncertainties, such as those caused by material scatter, and reducible un-

certainty, such as physics-based model error. In the presence of uncertainty, conservative

safety factors and design margins are used to ensure reliability, but these negatively impact

component weight and design life. This research investigates three areas to improve both

iteration time and prediction uncertainty for turbomachinery design. The f rst develops an

error-quantif ed reduced-order model that predicts the effect of geometric deviations on air-

foil forced response. This error-quantif ed approximation shows signif cant improvements

in accuracy compared to existing methods because of its bias correction and description of

random error. The second research area develops a Probabilistic Gradient Kriging approach

to eff ciently model the uncertainty in predicted failure probability caused by small sam-

ple statistics. It is shown that the Probabilistic Gradient Kriging approach is signif cantly

more accurate, given a f xed number of training points, compared to conventional Kriging

xiv



and polynomial regression approaches. It is found that statistical uncertainty from small

sample sizes leads to orders of magnitude variation in predicted failure probabilities. The

third research area develops non-nominal and nominal mode Component Mode Synthesis

methods for reduced-order modeling of the geometric effects on rotor mistuning. Existing

reduced-order methods approximate mistuning with a nominal-mode, or design intent, ba-

sis and airfoil modal stiffness perturbation. This assumption introduces error that can be

quantif ed when compared to a f nite elment model prediction of a geometrically perturbed

rotor. It is shown that the nominal-mode approach can produce signif cant errors, whereas

the non-nominal approach accurately predicts blade-to-blade mistuned response.
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1 Introduction

Chapter 1 gives the reader foundational information on the research subject. Section 1.1

provides an overview of the turbine engine, including its primary components and design

challenges, with emphasis on the High Cycle Fatigue (HCF) failure mode and conven-

tional industrial design approaches for HCF avoidance. Section 1.2 reviews four decades

of research related to mistuned response relevant to the methods developed in Chapter 4,

Application of Component Mode Synthesis Methods for Modeling Geometric Mistuning

in Integrally Bladed Rotors. Section 1.3 summarizes technical efforts relevant to the de-

veloped model and statistical uncertainty quantif cation methods described in Chapter 2,

Reduced-Order Model Development for Airfoil Forced Response, and Chapter 3, Proba-

bilistic Gradient Kriging to Efficiently Predict Failure Probability.

1.1 The Turbine Engine

Since their development in the early 1940s, turbine engines have powered great social,

economic, and military advancements. From the ability of aircraft turbine engines to con-

vey travelers with great speed, to power generation turbines responsible for nearly all the

worlds’ electricity, turbine engine are remarkable machines. Their development represents

the most signif cant advancement to the world’s military Air Forces, beginning with the

Messerschmidt 262 and extending to today’s F-22 Raptor, powered by the super cruising
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F119 engine. Turbine technology has come incredibly far in the past seventy years, but

there are still technological barriers to leap that will result in even more capable commer-

cial, industrial, and military applications. These future advancements will lead to lower

fuel burn rates, higher speeds, and greater reliability.

Three main component modules combine to create the turbine engine schematic shown in

Figure 1.1. Starting at the air intake, the compressor section increases incoming air pressure

and temperature using rotating airfoils to move f ow through an ever decreasing annulus. At

the end of the compressor, high pressure and temperature air moves to the second module,

the combustor, through a diffuser that enhances combustor mixing. The combustor injects

fuel into the airf ow which is ignited and further increases temperatures, pressures, and f ow

velocity. The combustion gases f ow through a nozzle into the third engine module, the

turbine. As the hot gas passes the turbine airfoils, rather than compressing the f ow, there

is expansion and work extraction. Turbine work is then passed through a shaft to rotate the

compressor. This continuous process accelerates air through the engine, resulting in the

opposite reaction of forward thrust.

Each successive turbine engine advancement must overcome incredible design chal-

lenges imposed by the operational physics. The interaction of aerodynamics, thermody-

namics, structural dynamics, and material mechanics are common to each engine compo-

nent and require thorough analysis. Extreme ranges of temperatures, pressures, and loading

must be endured by each component. Components can rotate between 10000−20000RPM,

for military f ghter aircraft engines, imparting tens of thousands of G’s on each airfoil,

thermal gradients between cooled and uncooled surfaces can be several hundred degrees

Fahrenheit, and parts must be tolerant to damage from ingested objects, including birds.

As a compounding challenge, pursuit of more eff cient and high performance engine com-

ponents drives designs towards lighter, thinner, yet still durable components. Considering

that engines are designed for thousands of hours of usage, it is not an understatement that

2



the turbine engine is an extreme engineering challenge.

To ensure engine reliability, a number of component failure modes must be designed out

of operational probability. Low Cycle Fatigue (LCF) is caused by the successive loading

and unloading of rotating components as the engine accelerates and decelerates through

its operational range. This loading generates stresses that surpass the elastic limit of the

material and can result in failures at well under 10,000 cycles. Creep failures affect com-

ponents that experience long hold times at high temperatures such as turbine airfoils and

disks. Creep will cause radial growth of the disk and airfoils, eventually leading to compo-

nent overstress or case impact. Thermomechanical fatigue (TMF) combines creep and LCF

in a nonlinear relationship that leads to more rapid failure than each causes independently.

Airfoil oxidation is caused by the hot gas path reaction with metal and ceramic components

and leads to reduced component strength and erosion.

Each of these failure modes pose signif cant challenges to the design community, but

they share a risk management advantage. Risk management is the practice employed by

engine maintenance organizations to ensure that operational risks are held to acceptable

levels and includes on-wing inspections, engine data analysis, and full engine tear-down

reviews. These practices can identify precursors of failure events and lead to replacement

and repair of components to ensure reliable operations. Each failure mode in the previous

paragraph develops slowly and progresses at predictable rates, allowing for successful risk

management.

Unfortunately, not all failure modes develop slowly. Rotor burst is a rare failure event

caused by over-stressing the disk beyond its ultimate strength. The main risk of these events

are over-speed conditions, but because of accurate steady stress prediction tools and engine

controls, this failure mode has been virtually eliminated. Airfoil f utter is an aeromechan-

ical phenomena encountered when the aerodynamic damping dramatically drops because

of the interaction of airfoil vibration and unsteady aerodynamic pressures. The loss of
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damping results in stresses that rise to dramatic levels that result in rapid failure. Though a

signif cant challenge even today, f utter occurs at a limited number of operating conditions,

which can be determined during design and developmental testing.

Related to f utter is another forced response phenomenon that has led to a signif cant

number of operational failures, airfoil HCF. This has been a signif cant focus of research

over the last decade and is a primary subject of this research with direct relevant to the

efforts in Chapter 2 and 4.

1.1.1 High Cycle Fatigue

Between 1982 and 1996, HCF accounted for 56% of all Air Force Class A engine-related

failure events [1]. Class A failures are those that result in loss of human life or at least

one million dollars in damage. In 1994, HCF required expenditure of 850,000 maintenance

man-hours for repair, replacement, and inspections. This failure mode has been so perva-

sive because of the inability to accurately predict airfoil forced response with physics-based

simulation, uncertainty in material capability, and an inability to effectively risk manage the

failure mode. Unlike other failure modes, HCF failure can occur seemingly at random with

no prior warning.

HCF is a damage mechanism characterized by elastic stress cycling over a large number

of cycles until failure. Frequently, HCF failures are characterized as those beyond 10,000

cycles. When engine conditions result in signif cant alternating stresses, to be detailed in

Subsection 1.1.2, there is a risk of HCF damage. While damage can be accumulated per

cycle and summed using Miner’s rule, this is generally not done in airfoil design because

of the uncertainty in operational stress magnitudes and the rate at which HCF cycles are

accumulated. HCF vibration frequencies for airfoils can be anywhere from several hundred

to many thousand cycles per second. With such high frequency response, incredible sums
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of damage cycles can be accumulated in a single aircraft mission.

Instead of damage summation, HCF design relies on a failure state def ned when the

resonant amplitudes exceed the endurance limit of the material. The endurance limit is an

experimentally determined value of stress at which HCF damage is not accumulated and is

a function of the material, alternating and steady stresses, and number of cycles to failure.

There exist many failure theories for these conditions, of which the most widely used is

the Goodman limit. Traditionally, 107 cycles def ne the number of cycles to failure. A

Goodman Diagram, Figure 1.2, is used to plot the division between inf nite and f nite life.

The x-axis is the steady stress value and the y-axis is the alternating stress value with a line

connecting the two axes def ning the boundary between the lower area, inf nite life region,

and upper area, f nite life region. The x-intercept is conventionally located at the material

ultimate strength and the y-intercept is the stress amplitude at HCF failure under the zero

mean stress condition. In this plot, points are included that represent the nodal stresses

from a f nite element model to show which locations have exceeded the Goodman limit.

Consider an engine that experiences a resonance condition at 15,000 Hz. If the alter-

nating stress is just above the specif ed endurance limit, going from the undamaged state

to failure would occur in less than twelve minutes. Given that aircraft missions are on the

order of hours, an undamaged engine can fail before development of a failure precursor that

can be identif ed through risk management practice. This is one cause for the high failure

rates seen in past decades and the reason why designing for HCF avoidance is critical.

Because of the signif cance of HCF to f eet failure rates and the risk management chal-

lenge it poses, accurately predicting HCF risks and reducing them through design is of

paramount importance. For current materials, prediction of the HCF fatigue life variation

can be effectively accomplished with empirical models. These empirical models can be

developed with relatively inexpensive material coupons and fatigue testing machines. Con-

versely, the component stresses cannot be effectively determined by empiricism because
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each test would require the manufacture of a full Integrally Bladed Rotor (IBR) at cost of

several hundred thousand dollars each. Physics-based forced response prediction tools are

therefore required to ensure robustness of future engine components susceptible to HCF..

1.1.2 Airfoil Forced Response

Prediction of airfoil forced responses that cause HCF failures remains one of the most dif-

f cult turbine engine design challenges. While HCF in turbine engines can strike anywhere,

the primary challenge and largest risk is associated with rotating airfoils in the compression

section. The compression section is composed of rotors and stators. Rotors are composed

of the rotating disk and airfoil subcomponents that function together to compresses the

incoming airf ow. There are two varieties of rotors, inserted-blade and integrally bladed.

Figure 1.3 shows an IBR, sometimes called a Blisk (bladed-disk), that is either machined

from a single metal forging or manufactured through welding individual airfoils to the outer

diameter of the disk. This approach was developed in the mid-1980s to reduce weight

and increase eff ciency, but a side effect was the reduction of friction damping inherent in

inserted-blade dovetail contact conditions. Because of this, IBRs are more susceptible to

large amplitude vibration and HCF. There are also inherent repair challenges with IBRs

because individual damage blades can no longer be easily replaced.

Airfoil forced response is driven by the interaction between rotating airfoils and sta-

tors. Stators are stationary airfoils within the compression section that participate in the air

compression process and redirect airf ow to be compressed by the next downstream rotor

section. Behind each stator airfoil are pressure distortions in the f ow f eld. As each rotor

airfoil passes from the stator passage, the area between two stators, the airfoil goes from

a high pressure to reduced pressure region. Because stators and airfoils are symmetrically

spaced around the engine circumference, the rotation of airfoils past stators imparts a har-
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monic excitation force on the airfoil. The harmonic excitation frequency is a function of the

number of stators and the rotor speed. A given rotor stage in the engine can be impacted by

the harmonic excitation of both upstream and downstream stator and rotor stages, leading

to the potential for very complex harmonic loading, but in general the upstream stator is

the most critical excitation source.

When the excitation frequency nears and eventually equals a rotor airfoil resonant fre-

quency, the forced response dramatically increases. Resonant frequencies are a fundamen-

tal dynamic characteristic of a component, along with the mode shape, and are determined

by component geometry, material properties, and boundary conditions. A structure excited

at one of its given resonant frequencies will have an unbounded response in the absence

of damping and have a displacement f eld given by the corresponding mode shape. The

magnitude of the displacement f eld is a function of the modal loading and system damp-

ing. The modal loading, or modal force, is the inner product of the loading vector with the

mode shape vector, or eigenvector. Damping is provided by the structural properties of the

material, the mechanical connections of the component, and the structural interaction with

the aerodynamic loading. As alluded to, IBRs lack damping from the mechanical interface

found in inserted-blade rotors, and there is limited damping associated with the monolithic

metal alloys used in IBRs.

Because prediction of alternating stress is computationally expense, airfoil HCF design

practices have relied heavily on resonance avoidance to ensure reliability. The primary

tool used to accomplish this is the Campbell Diagram (Figure 1.4), which determines co-

incidence of excitation and airfoil frequencies at multiple airfoil resonant frequencies and

engine order (EO) excitations. The EO excitation is the number of pulses an airfoil re-

ceives per revolution and is plotted on the diagram as lines that begin at the origin and

slope upward to the right. For example, if there are ten stators preceding a rotating stage,

it will see a ten engine order excitation. The nearly horizontal lines beginning at the y-axis
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represent the airfoil mode frequencies. The slight upward slope of these lines is caused by

the stress stiffening of the structure, resulting in higher frequencies as RPM increases. It

is also common for these lines to curve downward because of increasing temperature with

respect to speed that reduces the material stiffness. Where the engine order lines cross with

the airfoil mode lines, a resonant condition will exist at the def ned RPM on the x-axis.

Design practice is structured to avoid resonances at critical operation conditions such as

idle, cruise, and maximum speed.

Until only recently, resonant stresses were not predicted as part of design practice. In-

stead, the avoidance approach was used and supplemented by extensive engine testing to

determine high stress modes. Such an approach led to costly redesign efforts to move prob-

lem modes out of the operating range. Also, with the advent of low-aspect ratio airfoils

and their associated higher modal density, it became increasingly diff cult to avoid critical

resonances. Because of this, and because of improvements in computational capability,

physics-based prediction of forced response amplitude has been increasingly used in de-

sign. These physics-based tools include f nite element models (FEMs) coupled to unsteady

aerodynamic computational f uid dynamic (CFD) loads and methods to predict mistuned

rotor response. Mistuning prediction capabilities are a primary subject of this research, in

particularly, advancing the ability accurately predict and quantify uncertainty of mistuned

response.

1.1.3 Mistuning

Standard analysis procedures in engineering practice conduct computations on nominal, or

design intent, geometries. In some cases the analysis may consider blue print tolerances

to investigate sensitivities. For IBR forced response, analysis of the nominal geometry is

referred to as a tuned analysis to infer that all the airfoils of the rotor have identical natural
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frequencies. While this was standard practice for many years, it has been well known since

the early 1970s that rotor airfoils are not exact nominal geometries and, in fact, each airfoil

has slightly different geometry within inspection tolerance limits. Variation in the airfoil

geometries is caused by manufacturing deviations and usage effects such as erosion, foreign

object damage (FOD), and airfoil blending repair operations. These random geometries are

responsible for variations in airfoil frequencies, changes in mode shapes, and a breakdown

of the rotor’s cyclic symmetry.

Cyclic symmetry refers to a nominal, and therefore tuned, rotor’s periodic geometric

conf guration. In such a conf guration, the entire model can be identically represented by

a repeated sector that is rotated nb times through an angle equal to 2π/nb where nb is

the number of sectors. The assumption of cyclic symmetry can greatly reduce the size

of rotor models because only the single sector model is required. Cyclic constraints are

used as boundary conditions between the adjacent faces of the sector model to provide

results equal to a full rotor model. Cyclically symmetric components are characterized by

multiple response harmonics and repeated natural frequencies. These harmonics physically

represent the disk nodal diameters which are lines of zero displacement that cross the rotor.

In the presence of random airfoil geometries, cyclic symmetry breaks down, resulting

in changes in the nodal diameter response and the splitting of repeated roots. Instead of

a single repeated root there will be nb blade, closely spaced natural frequencies. A single

excitation frequency near the tuned repeated natural frequency will then excite multiple

modes. The magnitude of each mode’s amplitude is a function of its proximity to the exci-

tation frequency, the modal forcing of the mode, and modal damping. The superposition of

the modal response from the multiple excited modes can lead to the localization of modal

energy in a small set of blades. Combination of these modes can, and does, lead to forced

response results greater than an excitation of the tuned model. Figure 1.5 shows a typical

result forced response function (FRF) from a mistuned rotor where each dotted curve rep-
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resents and individual blade’s response and the solid line is the tuned response where each

blade has the same forced response.

It should be clear that mistuning is a stochastic phenomenon governed by the airfoil

variations of each individual IBR. This complicates the tasks of quantifying IBR forced

response and requires use of conservative design margins or predictions of the stochastic

behavior.In fact, a signif cant body of research has focused on predicting the theoretical

maximums of mistuning which can lead to amplif cation factors beyond 5x [2]. Stochastic

behavior prediction is much more valuable because reliability can be explicitly quantif ed,

the effect of design changes can be determined, and less restrictive bounds can be used for

mistuning.

The following section, 1.2, begins with a literature review of the key research efforts in

predicting rotor mistuned forced response and relevant stochastic modeling efforts. From

this review, areas of needed research will be identif ed to improve the current state-of-the-

art in mistuning prediction. Section 1.3 proceeds with a review of model and statistical

uncertainty quantif cation research, which are relevant to mistuning as well as other turbo-

machinery failure mechanisms.

It is found that the development of reduced-order models has not considered the quan-

tif able uncertainty of the approximation. A signif cant contribution would be to develop

an uncertainty-quantif ed approximation approach for airfoil forced response. Second, it is

found that nominal-mode approximation of mistuned response is the dominant method for

mistuning approximation, the uncertainty this creates has not been studied, nor have non-

nominal mode reduced-order approaches been developed based on Component Mode Syn-

thesis (CMS) solutions. Secondly, it is found that methods to quantify physics-based model

error have not been widely developed. Third, it is found that the uncertainty in probability

density function statistics from small sample sets, and their impact on failure probability

conf dence intervals, have not been extensively researched, particularly for sample-based
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failure probability calculations.

1.2 Review of Relevant Mistuning Research

This section reviews the last 40 years of mistuning research and highlights efforts relevant

to the remainder of the dissertation. The f rst subsection reviews research efforts that stud-

ied mistuned rotors with lumped stiffness, mass, and damping models and determined the

signif cance of the problem as well as insights into key parameters. The review continues

with a subsection,on recent efforts to develop reduced-order f nite element model-based

mistuning models. The third subsection reviews methods to probabilistically predict mis-

tuned response. From this review of efforts, the need for additional research is def ned.

1.2.1 Lumped Parameter Model Mistuning Studies

Seminal efforts in computational and empirical mistuning were conducted by Ewins [3].

In his 1969 publication, an analytical model of coupled lumped masses was constructed to

represent a f ve-bladed disk with various magnitudes of frequency splitting, i.e. mistuning.

By varying the magnitude of the splitting and damping, he achieved results showing that

forced response stresses varied between 60% and 120% of the tuned response. He further

showed that the ratio of frequency splitting to damping could be used to def ne mistuned

response across a range of selected values. Using a thirty-bladed rotor with mistuning

applied by attaching shims of various thickness to the blade tips, Ewins empirically showed

very close qualitative agreement for the 1st bending mode of a selected subset of airfoils.

Going further, the paper recommends a blade frequency arrangement strategy to reduce the

overall forced response and, as later verif ed, virtually eliminate mistuned amplif cations

[4]. This single paper covered many of the concepts that would be ref ned over the next 40

years.
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Other signif cant works in the early era of mistuning analysis continued to use analyt-

ical lumped parameter models. Considering the computational capabilities of the time,

this was a necessity. Dye and Henry modeled a 43-bladed Spey low pressure compressor

rotor as a sequence of masses coupled through springs to adjacent masses, representing

blade-to-blade coupling, and also coupled to ground through a spring to represent disk

stiffness [5]. This model, shown in Figure 1.6, and slight modif cations of it have been and

will continue to be widely used by numerous researchers. Empirical quantif cation of the

model parameters for the Spey rotor was conducted to determine values for the springs,

and subsequent analysis showed impacts of disk-to-blade stiffness ratios, damping value,

and mistuning distributions. This effort set the example for accounting for blade frequency

deviation through probability distributions, specif cally with a truncated Gaussian distribu-

tion, and also showed a now classic plot of maximummistuning amplif cation as a function

of mistuning percentage. These plots show an almost parabolic increase and decrease in

mistuning amplif cations at low mistuning values, followed by a consistent tapering off at

higher mistuning deviations. Dye and Henry predicted mistuning amplif cation at nearly

twice the tuned response, far greater than the original effort of Ewins.

Whitehead derived a maximum amplif cation equation for mistuned response that was

the beginning of many future efforts to develop this capability [2]. His derived value of

05.(1 +
√
nb), when applied to the 43-bladed Spey rotor, equates to an amplif cation of

almost four times the tuned response. The developed model considered only aerodynamic

coupling of blades and was formulated to couple each blade with all other blades on the

rotor. The combined efforts of Ewins, Dye and Henry, and Whitehead created a strong

foundation for further researchers, and many of their f ndings are still quite valuable to

understanding mistuning.

The following two decades saw continued ref nement of lumped parameter models for

mistuning prediction. El-Bayoumy and Srinivasan treated the disk as an axisymmetric plate
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with tapered thickness to more accurately represent disk design geometries [6]. This effort

was exceptional in that it showed f gures of the mistuned mode shapes for a 24-bladed ro-

tor as an approach to determine the highest responding mistuned blade. Such information

would be valuable during the instrumentation of demonstration hardware to ensure mea-

surement of maximum stresses. They concluded that the maximum response blade was

located near the tuned system frequency rather than an extreme mistuned blade. Additional

results showed, for the investigated mistuning pattern, mistuning amplif cations for the

high stress blade of approximately 48%. The ability to identify the mistuning pattern will

be a key issue of the non-nominal and nominal mode mistuning approximation analyses in

Chapter 4.

Sogliero and Srinivasan used the same model but investigated the impact of the mistuned

response of a random f eet of rotors on the expected time to failure [7]. This is the unique

in that it is the f rst instance where a probabilistic mistuning study was used for reliability

quantif cation. A sample of 24 blade frequencies was selected from a Gaussian distribution

to generate a random rotor response and this was repeated for 10 random rotors. Four blade

frequency populations were investigated, which had standard deviations ranging from 2

Hz. to 15 Hz., with an average value of 391 Hz. Results showed that the 2 Hz. standard

deviation had the lowest life and improved at each increase in variation. The effort also

showed that the distribution of life followed approximately the Weibull distribution and

that, for coeff cients of variation above 1.25%, the mistuned life exceeded the tuned life.

The use of the Weibull distribution to model mistuned response would continue to be used

and investigated almost 40 years later [8].

Kaza and Kielb developed a model that incorporated both structural mistuning and aero

coupling for f utter prediction [9]. Aerodynamic loading for each airfoil was predicted

using two-dimensional unsteady cascade theories and provided the f rst attempt at using

physics-based prediction of aerodynamic loads for mistuned response prediction. Even
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today, use of realistic loading is typically ignored in mistuning assessments. The effort

primarily investigated the impact of mistuning on f utter and concluded that a moderate

amount of intentional mistuning can reduce f utter occurrence.

Griff n and Hoosac developed a model representing each rotor sector as three lumped

masses connected by springs to represent the disk, platform, and airfoil [10]. Sector-to-

sector structural coupling was through springs connecting the disk masses and aerodynamic

damping was represented with elements connecting airfoil masses. The effort conducted

several analyses investigating the impact of normally distributed blade frequencies on re-

sponse. A signif cant f nding was that the distribution of response was not normally dis-

tributed, which impacts results from statistical perturbation techniques to be discussed in

Subsection 1.2.3, which assume normally distributed response. Results also showed sig-

nif cant mistuning located at the frequency of the tuned mode, which corroborated prior

results [6]. In contrast to the prior effort of Sogliero and Srinivasan [7], the study showed

that maximum mistuned response did not decrease at large standard deviation values for

mistuning. This is not an uncommon event in the use of lumped parameter models with

specif c dynamic properties and loading conditions. The paper concludes with f eet man-

agement strategies that show that reduced mistuned response can be achieved by sorting

blades into closely matched frequency groups or a dual population of high and low fre-

quency airfoils.

Afolabi modif ed the Dye and Henry model to incorporate two degrees-of-freedom (DOF)

airfoils and constructed 30-bladed models with blade frequencies selected from a Gaussian

distribution [11]. In his work, it was found that the minimum and maximum response

blades were most often found with blades having the largest deviation from the tuned fre-

quencies, again, in contrast with previous work. This phenomenon is validated experi-

mentally on a 33-bladed rotor where all airfoils were strain gaged, and it was concluded

that when limited instrumentation is available, gages should be placed on the extreme fre-
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quency airfoils. Again, it is desired to predict blade-to-blade mistuning patterns. This has

signif cance for Chapter 4 where this capability is assessed for nominal and non-nominal

mistuning approximation methods.

Griff n would later develop a modif cation to the two-mass problem that represented

aerodynamic coupling between airfoils with a spring-dashpot element [12]. The structural

parameters of the model were chosen so that they gave results similar to a nominal f nite

element model and the aerodynamic parameters were calculated using a NASA-developed

aerodynamic code. The statistical variation of the structural parameters was set to corre-

spond to bench test measurements of a set of airfoils. When compared to empirical results,

the theoretical model matched data for the f rst two modes very well, with a signif cant dif-

ference for the third mode. Of special importance, while comparing experimental results

to theoretical, the authors account for the variation in experimental results caused by strain

gage errors that result from variations in strain gage ratios. This is the f rst known effort

to account for the impact of mode shape variations in such an analysis. Their empirical

investigation showed that the standard deviation in the ratio of the strain to displacement

varied from 8 to 13 percent for the f rst three modes, which is substantially larger than the

typical 1 to 2 percent standard deviation of frequency. This indicates that the nominal-mode

mistuning approximation should be investigated further because of the demonstrated large

variation in mode shape.

Wie and Pierre applied perturbation methods for free and forced vibrations to investi-

gate signif cant mistuning factors [13]. Their investigations showed that mistuning was

dependent on coupling strength and that for a small mistuning to coupling ratio, i.e. strong

coupling, the system responds as a perturbation of the tuned system. For the weak coupling

case the system responded as a perturbation of the decoupled mistuned system where small

mistuning greatly impacts response.

A of lumped parameter mistuning research has identif ed two signif cant issues relevant
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to the new methods developed in this dissertation. First, the prediction of blade-to-blade

stresses is important to the design process. Also, mode shapes vary to a larger degree than

frequencies, which impacts the accuracy of the nominal-mode mistuning approximation

discussed in the following subsection.

1.2.2 Advanced Physics-based Reduced-Order Mistuning

Model Development

The lumped parameter mistuning models were vital for creating a basic understanding of

mistuned response but they could not accurately predict rotor mistuned response. An ob-

vious problem was that they could only investigate a small set of modes and they were

coarse approximations of actual design geometry. It would take time for advancements in

computational power and f nite element modeling tools for more rigorous methods to be

applied.

A foundation for mistuningwork that would come decades later was established by Craig

and Bampton in almost the same year that the initial analytical mistuning studies were

beginning [14]. Their article def ned an approach for substructuring based on constraint

modes at substructure interfaces and the f xed-interface normal modes of the interior DOF.

The def ned method was the Craig-Bampton (C-B) Component Mode Synthesis (CMS)

approach which was computational eff cient, easily implemented, and would be widely

adopted by commercial f nite element modeling codes. Irretier would use the CB-CMS

approach to model a simple 2-D mistuned bladed disk model and demonstrate the process

of using a f nite element method to produce required response substructures [15].

A modif ed CMS technique, applicable to modern day design practice, was shown by

Castanier, et al. [16]. The approach used cyclic-sector f nite element predictions of modal

quantities, stiffness, and mass matrices for use in a modif ed CMS approach that used
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disk-induced constraint modes. Use of disk-induced constraint modes limits interface DOF

and reduces the assembled substructure size and solution time. The modif ed CMS tech-

nique further assumes that mistuned response can be approximated by linear combination

of nominal, i.e. tuned, modes. This limits the method to perturbation of airfoil frequencies,

and ignores geometric mistuning effects on constraint modes and cantilevered substructure

mode shapes. Results compared favorably to analytical case studies [17]. The analytical

case studies used a full FEM that applied airfoil Young’s modulus mistuning to represent

mistuning. As such, the airfoil substructures maintained their nominal mode shapes and

the full models themselves were only an approximation of geometric mistuning. This is

signif cant and the work in Chapter 4 will conduct a validation of the nominal approach

using a geometrically perturbed full model. In the original validation study, accuracy was

degraded by excessive interface stiffness caused by the disk-induced constraint mode as-

sumption, and an iterative approach to artif cially adjust mistuned modal stiffnesses was

employed for solution improvement. The approach has been widely used by the turboma-

chinery industry, and software development led to mistuning prediction software, known

as REDUCE. The approach is also referred to as a Component Mode Mistuning (CMM)

approach. Later, the REDUCE CMS method was modif ed by Bladh et al. to account for

shroud interfaces [18].

Bladh et al. developed a C-B CMS approach that used a Secondary Modal Analysis Tech-

nique (SMART) to further reduce assembled substructure matrices size [19, 20]. Because

the approach is based on C-B CMS, the interface stiffness between substructures is more

accurately represented. The resulting model will have a larger set of DOF compared to RE-

DUCE, but the SMART approach conducts an eigenanalysis of the C-B reduced matrices

to create a second reduced basis. The SMART results are used in a mistuning projection

technique to accurately predict mistuning with fewer DOF because of the more accurate

constraint mode stiffness modeling. As with REDUCE, validation was conducted with a
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full FEM that applied various Young’s modulus values for each airfoil to represent mistun-

ing.

Recent work by Lim, Bladh, Castanier, and Pierre researched the impact of an aspect

geometric mistuning [21]. It specif cally addresses the impact of large geometric deforma-

tions caused by Foreign Object Damage (FOD) and how the deformed shape of a single

blade impacts forced response. The solution approach uses a CMS approach and divides

the rotor into two substructures, a tuned bladed disk and the set of mistuned airfoils. In the

formulation, all the DOF in the mistuned airfoil component are treated as interface DOF.

This can lead to large reduced-order models when all the blades are mistuned. By consider-

ing the case of a single FOD deformed airfoil, the model order is greatly reduced. The two

subcomponents in the model are coupled through attachment modes created by applying

unit forces to the interface region of the tuned bladed disk. The authors noted that these

attachment modes can lead to matrix ill-conditioning and numerical instability due to the

fact that displacement values of the attachment modes are much less than those of normal

modes. Also, the attachment and normal modes may not be independent.

To overcome the numerical challenges caused by the attachment modes, Lim, Castanier,

and Pierre developed a reduced-order modeling approach based on the mode acceleration

method based on static mode condensation [22]. In this approach the mistuned system is

transformed to a reduced basis space of the tuned systemmodes and a set of static def ection

shapes that account for mistuning. These static def ection shapes can be obtained without

the need to conduct a more expensive modal analysis. Again, in this case a single blade

deformed by a FOD impact was addressed, which reduced the number of static analyses

to conduct. Both papers were exceptional as the f rst approach to handle geometric effects

of a mistuned system. They were constrained to the impact of large geometric effects on a

single blade and conducted a deterministic analysis.

Petrov, Sanliturk, and Ewins developed an alternate reduced-order mistuningmodel [23].
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This model represents mistuned rotors as a summation of the dynamic stiffness matrix of

the tuned matrix plus a mistuning matrix. The matrix inversion operation required in the

solution is eff ciently solved using Sherman-Morrison-Woodbury identity that simplif es

the inverse computations for two added matrices. The mistuning matrix is reduced by con-

sidering a subset of the full model that include DOF where mistuning is applied and where

response quantities are known. With this approach, if airfoil geometries are varied then

all the airfoil surface DOF are required, which could become computationally expensive.

To avoid this, the authors proposed using a few active DOF per blade and using lumped

mass, stiffness, and damping elements to act as representative mistuning elements. It was

also noted by the authors that the accuracy of the model was reliant on the tuned system

modes and it therefore shares the nominal-mode assumption of the REDUCE and SNM ap-

proaches. Petrov and Ewins would use this mode to conduct analysis of the worst mistuning

patterns in rotors [24].

During the development of the CMS simulation approaches at the University of Michi-

gan, efforts at Carnegie Mellon were developing alternate approaches for reduced-order

mistuning models from tuned FEM results. Yang and Griff n developed an approach based

on the receptance method [25]. This effort was based on a method by Menq, Griff n, and

Bielak that was applied to beam element tuned analysis [26]. The receptance method is

similar to that of CMS in that the response of a set of connected substructures is predicted

by how it reacts at the interface. The non-interface DOF are expressed in some manner

at the interface DOF. Yang and Griff n’s effort represented the response of the rotor as

rigid-body interface displacements and tuned clamped-free blade modes. The approach

was demonstrated on a two-dimensional FEM representing a rotor, and mistuning in the

model was represented as elastic modulus changes to the airfoils. This approach is similar

to the REDUCE approach, though the REDUCE uses disk-induced displacements to cou-

ple the modeshapes. Use of rigid-body modes at the interface led to overly-stiff response
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and development of the receptance approach was not continued.

Soon after this, Yang and Griff n would develop a new reduced-order modeling tech-

nique [27, 28]. Their approach created the reduced model through transformation of the

full system model to a modal basis of tuned modes. In this case the rotor is treated as a

single structure. The number of reduced DOF is determined by how many tuned modes

are retained. The response of the mistuned system is approximated by a weighted sum of

the nominal modes that are determined by solving the modal eigenvalue problem. Mistun-

ing is introduced by perturbing the modal stiffness and mass matrix that results from the

new basis transformation. For computational simplicity and eff ciency, these perturbations

are a Young’s modulus perturbation proportional to the percentage frequency mistuning of

each airfoil. This model is attractive because it can be constructed from a cyclic sector

f nite element model, results in a small reduced order model, and accurately accounts for

blade-disk interface stiffness. The method was demonstrated on a two-dimensional rotor

model with mistuning represented by changing the elastic modulus of the airfoils. Again,

as with previous efforts, the validation problem itself was only an approximation of geo-

metric mistuning. The developed method was implemented in software called Subset of

Nominal Modes (SNM) and has been widely used in the turbomachinery industry. The ef-

forts in Chapter 4 will apply the nominal-mode approximation to a geometrically perturbed

IBR and quantify the method’s uncertainty.

Feiner and Griff n would introduce a modif cation to the subset of nominal modes ap-

proach [29]. In their article, the authors formulated a method to approximate the mistun-

ing matrix, which requires the stiffness and mass matrix from a FEM, with blade-alone

frequency deviations. The method allows mistuning predictions based on either FEM pre-

dicted or measured frequencies without the need for a FEM generated stiffness and mass

matrix. The method was demonstrated on a two-dimensional rotor example where mis-

tuning was represented by changing the blade length, density, and elastic modulus. The
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assumptions in the model are that a single, isolated family of modes is involved in the re-

sponse, the strain energy is primarily in the blades, the frequencies are closely spaced, and

the blade mode shapes are equivalent. The authors conclude that these assumptions are

valid for the fundamental, i.e, low order modes. Examples were shown where the method

proved inaccurate at higher modes. This model would be later used as a tool for mistuning

identif cation, the process of determining a rotor’s stiffness, mass, and damping properties

based on measured frequency response data [30, 31]. The developed method was imple-

mented in software called Fundamental MistuningModel (FMM) and has been widely used

in the turbomachinery industry.

Sinha expanded the SNM approach for geometric mistuning and labeled the approach

Multiple Modal Domain Analysis (MMDA) [32]. His work is signif cant and relates

to Chapter 4 in that it develops a method to explicitly account for geometric mistuning.

The approach represents the blade geometry variation through a spatial statistics model as

shown by Garzon et al. [33]. The MMDA approach uses nominal system tuned modes and

tuned modes of rotors having perturbed geometry based on the spatial statistical analysis.

The spatial statistical analysis produces a set of principal component modes that def ne the

geometric deviations with a reduced basis. The perturbed geometries consist of the nom-

inal geometry with the addition of each retained principal component mode. The ROM

dimension is the number of tuned modes retained multiplied by the number of retained

principal component modes. This is still an approximate basis for the airfoil modeshapes

since the actual geometry of the airfoils is not used to generate the modal basis. The ap-

proach uses results from a cyclic sector analysis and sector DOF are transformed to the

new basis through pre- and post-multiplying matrices. The approach was demonstrated on

a geometrically-perturbed academic rotor and showed excellent accuracy for a single mode.

It was not shown that a nominal mode approximation would not work for the considered

mode.
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While MMDA is an effective ROM, there can still be large computational costs associ-

ated with the transformation of physical sector DOF to the new basis, particularly when

there are a large number of DOF in the disk. It also requires full model solutions from mul-

tiple sector models. The CMS approach would alleviate these problems by partitioning the

substructures so that DOF associated with the disk would not need to be solved for each re-

tained geometry model. The approach also is an approximate basis that may not eff ciently

provide accurate solutions with a limited number of retained modes. Sinha’s work also did

not demonstrate the use of the nominal-mode approximation for the problem, and therefore

did not fully demonstrate the need to account for non-nominal modes. Therefore, there

remains a signif cant need to develop a CMS approach, as in Chapter 4, that demonstrates

nominal and non-nominal approximation of geometric mistuning.

1.2.3 Probabilistic Efforts in Mistuning Modeling

Several previously mentioned research efforts have modeled blade frequency variations as

probability density functions and used Monte Carlo sampling to predict mistuned forced

response variation. Use of Monte Carlo sampling can require a signif cant number of sim-

ulations in order to conf dently predict the mistuned forced response distribution, and re-

searchers have pursued methods to accelerate the prediction. In general, these efforts have

been demonstrated on lumped parameter systems.

Sinha developed one of the earliest probabilistic methods to predict the distribution of

mistuned response [34]. His approach was to formulate the dynamic response of a discrete

model of a mistuned rotor as function of tuned and perturbed response to obtain a closed

form solution for the perturbed response. By assuming that the stiffness variations used to

represent mistuning were Gaussian and independent, the response of the mistuned system

would also be normal because the displacement prediction is based on a linear combination
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of the mistuning variations. Sinha found that the accuracy was dependent on the level of

damping with inaccuracies found in low damping examples.

Wei and Pierre conducted statistical analysis using multiple approaches on the same dis-

crete parameter model [35]. Their work included the application of a hybrid statistical

perturbation technique that consisted of Monte Carlo sampling using a perturbed modal

response model that provided input to a modal superposition forced response model. A

second approach directly predicted the perturbed forced response without the modal analy-

sis requirement. Both allow the use of higher order perturbation methods while reducing

the computational resources needed for the full-order model. Example applications showed

that the hybrid and analytical prediction approaches were accurate under specif ed condi-

tions of damping and mistuning levels.

Recently, Mingnolet, Lin, and LaBorde developed a new perturbation method resulting

in an analytical formulation of the mistuning probability density function [36]. Full def-

inition of the applied adaptive perturbation method is given in a prior paper [37]. When

applied to a discrete mistuning model, the method was able to more accurately predict

the probability density function over a wider range of mistuning conditions than previous

efforts.

While perturbation methods have signif cant computational advantages, results have

shown that their accuracy can degrade depending on the mistuning parameters of the sys-

tem. Researchers have developed alternate approaches to approximate the probability den-

sity function of mistuned systems using stochastic basis vector approaches applicable to a

wider range of mistuning parameters. Bay, Nair, Bhaskar, and Keane developed such an

approach using preconditioned stochastic Krylov vectors and a Bubnov-Galerkin method to

compute the coeff cients of the vector participation. Examples, using a discrete representa-

tion of a mistuned system, showed accurate results for the f rst two statistical moments and

the mean of the maximum blade amplitude. It was shown that the method provided more

23



accurate results than linear perturbation methods but still had accuracy problems when the

statistical variation, as a function of excitation frequency, was highly nonlinear. This could

be a result of the use of only three Krylov vectors to represent the response. Also, the

method does not predict the full distribution of response [38]. Sinha used a polynomial

chaos approach, which is related to the previous effort but uses Hermite polynomials [39].

It was found for a discrete mistuning model that the third-order polynomial chaos expan-

sion yielded accurate statistics of the forced response.

Capiez-Lernout and Soize developed a nonparametric model of random uncertainties for

mistuned bladed disks and used a FEM-based model for prediction [40]. This approach

begins with the nominal-mode C-B CMS reduction of a bladed disk using tuned system

modes of the disk sector and blade subcomponents. The blade subcomponent modal stiff-

nesses are treated as random and with their matrix entities governed by a def ned nonpara-

metric probability function. This probability function includes dispersion parameters that

include a non-physical parameter as a technique to account for model errors and can be

used to assess the sensitivity to random data and prediction error. A follow on effort by the

authors modif ed these dispersion based on an estimate from three geometric parameters

[41]. The accuracy of this approach is diff cult to assess since the dispersion parameters

are non-physical and are intended to represent multiple forms of uncertainty. The meth-

ods in Chapter 2 develop an explicit approach to quantify geometric variation on modal

stiffness, as well as blade mode shape.

Scarselli and Lecce investigated the use of a range of non-deterministic approaches to

predict mistuned rotor response [42]. They demonstrated the approaches on a twenty-

bladed rotor modeled by three-dimensional f nite elements. Mistuning was introduced

through variation in the elastic modulus of each blade. A three layer artif cial neural net-

work model was used to approximate response. A network was constructed using sixty-

seven training sets and the results were quite poor. Results from one thousand training sets
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resulted in better results for the lowest frequency mode but poor results for all other modes.

The authors concluded that further improvements to neural networks would be required

for mistuning applications. The authors also demonstrated a Genetic Algorithm (GA) op-

timization to maximize mistuning amplif cation. A prior effort used this same approach to

minimize mistuning [43].

Li, Castanier, Pierre, and Ceccio applied an experimental Monte Carlo approach to pre-

dict the population of mistuned response [44]. The experimental approach involved a single

24-bladed test rotor subjected to many varying forces that were used to represent frequency

mistuning variation. The required force variation is determined by predicting a forced re-

sponse caused by structural variations and recasting the dynamic equations to solve for the

forces with the known displacements. These forces then were applied to the test rotor over

a range of random mistuning patterns to experimentally gather the distribution in response.

Experimental results were compared to reduced-order model predictions using the struc-

tural frequency variations. While in many cases the comparison of the distributions did

show differences, the experimental approach did a surprisingly good job at capturing the

99th percentile response.

Lee, Castanier, and Pierre assessed the use of several probabilisticmethods on a two DOF

per blade lumped parameter model [8]. This included the First-Order Reliability Method

(FORM), Second-Order ReliabilityMethod (SORM), AdvancedMeanValue (AMV)Method,

Moving Least Squares Response Surface, radius-based importance sampling, and statisti-

cally accelerated Monte Carlo. Many of these approaches have been widely used in prob-

abilistic applications. The accelerated Monte Carlo involves the use of a three-parameter

Weibull distribution to model the statistical behavior. It was found that FORM, SORM,

AMV, and response surface method were unable to predict the distribution of maximum

mistuned response, regardless of the standard deviation of frequency variation. This is not

unexpected as the performance function of the mistuned response is quite chaotic. The
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radius-based importance sampling approach was computationally expensive because of the

large number of variables. The accelerated Monte Carlo method, based on the assumption

that the distribution of the maximummistuned response can be modeled by a Weibull, gave

good results. Fifty mistuning simulations were used to determine the three Weibull para-

meters and this distribution compared well with results from 500 Monte Carlo simulations.

Each of these efforts are signif cant in the development of methods to probabilistically

predict mistuning, but they have not addressed two signif cant factors. First they have not

explicitly accounted for geometric variation in the analysis. A method will be developed

for this in Chapter 2. Second, they have not addressed model and statistical uncertainty

in the analysis. Model uncertainty refers to the discrepancy between the reduced-order

model and the full-order model that it is representing, and the statistical uncertainty refers

to the lack of knowledge of the true population statistics of a random parameter. There are

other uncertainties of relevance, such as the discrepancy between the full-order model and

experimental data, but these are not addressed here. A model uncertainty quantif cation

approach is considered in Chapter 2 and statistical uncertainty is considered in Chapter 3.

The following section reviews efforts in both model and statistical uncertainties.

1.3 Review of Probabilistic Analysis and Epistemic

Uncertainty Quantification Research

Probabilistic analysis propagates design parameter input variations through a physics-based

model to predict variation in response. Input are conventionally def ned with Probability

Density Functions (PDF) and the output are response statistics and PDF. It is an alter-

native to deterministic analysis processes that account for variations through experience

based safety factors. While deterministic approaches have been used with success, they are
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typically over conservative. Today’s increasing demand for lower cost, higher performance

systems, has led to the demand for improvedmethods. The probabilistic approach can more

accurately model variation and lead to reduced conservatism yet maintain system safety. It

has also been demonstrated that the experienced-based safety factors of a deterministic ap-

proach do not guarantee safety, particularly for new systems which may operate beyond our

historical experience. The probabilistic approach allows for assessment of safety in these

new operating regimes.

A probabilistic analysis can be divided into three stages, def nition of input uncertainty,

physics-based model def nition, and probability integration. The def nition of input un-

certainty typically refers to def ning PDF for input parameters, but there are also non-

probability based methods for quantif cation such as Bayesian [45], fuzzy sets [46], evi-

dence theory [47], and information gap [48]. The physics-based model is either the same

model used in the deterministic design process or frequently a surrogate model of the

process such as a response surface. The probability integration method propagates the

impact of the input distributions through the physics-based model, and there are many ap-

proaches to do so. A common approach is Monte Carlo analysis which randomly samples

the input distributions, calculates the physic-based model response, and over many samples

predicts the response distribution.

While uncertainty is accounted for in the def nition of input variation through PDF, un-

certainty in a probabilistic analysis is also present in the physics-based model and proba-

bility integration method. There is uncertainty in the physics-based model caused by both

the analytical form and the solution’s numerical discretization. Probabilistic integration is

also uncertain based on the approach used to approximate the multi-dimensional integra-

tion of the failure domain. For example, Monte Carlo analyses uncertainty is a function of

the number of random samples and the systems failure probability. Even the def nitions of

design parameter uncertainty with PDF is uncertain when small statistical samples are used
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for their development.

Uncertainty in the probabilistic analysis can be categorized as either aleatory or epis-

temic. Aleatory, or irreducible, uncertainty is the natural variation of a parameter, such as

the variation in material fatigue properties due to grain size, shape, and location. Because

exact grain properties of a specif c object are unmeasurable without destructive evaluation,

these properties are unknown to the analyst. Epistemic, or reducible, errors are caused by

a lack of information that could be obtained if constraints of time and cost were removed.

For example, uncertainty in design parameter PDF can be reduced through collection of

additional data points, and model error can be reduced by including higher order terms in

the analytical form.

Understanding the uncertainties at all stages of the probabilistic analysis process is nec-

essary for conf dent application to practical design. Most research in probabilistic methods

have considered aleatory uncertainties, but a growing body of research has been focused on

accounting for epistemic uncertainty in the analysis process. For the purpose of this review,

the epistemic efforts are divided into physics-based model error quantif cation and statis-

tical uncertainty quantif cation. This division also ref ects the content of this dissertation.

Chapter 2 develops an approach to account for physics-based model error and Chapter 3

addresses statistical uncertainty quantif cation. These chapters expand on prior works in

the area, reviewed in the following subsections.

1.3.1 Model Error Quantification Research

Thacker et al. def ned a conceptual framework for computer simulation verif cation and val-

idation which encompasses the need for model error quantif cation [49]. In their work, they

def ned the need for validationmetrics for a model prediction and suggested a simplemetric

based on the function e = y− y∗, where y is experimental data, y∗ is the model prediction,
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and e is the error. Proposed metrics included the expected value of the error, E(e), error

variance, V (e), error probabilities, P (e > 0), or hypothesis tests such as E(e > 0). Their

work also considered model calibration, def ned as the process of adjusting model parame-

ters to improve agreement between model output and experimental measurements. They

reference a statistical model calibration approach developed by Kennedy and O’Hagan as

a potential approach [50]. The work concludes with recognition that variation in model

input parameters can be established and propagated through simulation approaches such as

sampling-based methods (Monte Carlo, Latin Hypercube, etc.) and sensitivity based meth-

ods (First Order Reliability Method (FORM) [51], Advanced Mean Value [52], Adaptive

Importance Sampling etc. [53]).

Kennedy and O’Hagan developed an approach to statistically account for the error be-

tween a model and experiments [50]. They based their model on Gaussian stochastic

process models of deterministic computer code output, a method developed by Sacks et

al. [54]. Kennedy and O’Hagan modeled the relationship between computer code output

and experiments as

zi = ρη(xi, θ) + δ(xi) + ei (1.1)

where zi are empirical observations, ρ is an unknown regression parameter, η(·, ·) is a

Gaussian stochastic process model representing predicted response as a function of mea-

sured variables, xi, and calibration parameters, θ. The model inadequacy function δ(·) is a

Gaussian stochastic process model of the difference between zi and η(·, ·), and ei is experi-

mental observation error. This problem is formulated in a Bayesian framework where prior

information is def ned for θ and ρ. Given new information from experiments, zi, a Bayesian

update is conducted that adjusts the calibration data to a posterior distribution that accounts

for the new information. The calibration parameters are selected by the analyst prior to this
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analysis and require the def nition of an appropriate prior. Both of these requirements are

subject to uncertainty. The method developed in Chapter 2 uses a frequentist approach to

calibrate the model, avoiding the challenge of prior def nition, and also uses an analytical

method to determine which design parameters should be calibration parameters.

Ditlevsen suggested that the model uncertainty should be related directly to the basic

variables in the f rst journal issue of Structural Safetyin 1982 [55]. Thoftt-Christensen and

Murotsu suggested that model uncertainty be taken into account by adding non-physical

random variables to the probabilistic calculation [56]. The error variables are added as

subjectively def ned second order moments. There are clear computational simplicities

with this approach but the subjective nature of the quantif cation has inherent disadvan-

tages. The method developed in Chapter 2 will provide a quantitative approach to def ne

the model error variation.

Several efforts have been conducted on quantifying the discretization error associated

with numerical models. Alvin incorporated mesh discretization error into a response sur-

face model [57]. The response surface includes variation in design parameters and the

f delity of the computational mesh. His work extends the process of Richardson’s extrapo-

lation [58, 59] that bases discretization error estimates on successive numerical solutions.

It requires results from more than two grid densities to verify the convergence rate for

the extrapolation. In probabilistic solutions that vary design parameters, this convergence

analysis would need to be done at each variation, which would signif cantly increase the

computational cost of the analysis. Alvin’s method developed a response surface model

that did not consider every parameter value in the analysis, and instead both mesh sized

and the parameters were change in a Design of Experiment discretization of the design

space. This limits the number of reanalysis required yet covers the grid density errors

across the design space. The method was successfully demonstrated on a dynamic sim-

ulation of a one-dimensional bar. Kammer et al. extended this approach using a rational

30



function, rather than the polynomial basis of the Alvin’s original work [60]. The approach

allowed accurate extrapolation with a coarser mesh in the numerical analysis. It is recog-

nized that this technique does not address all forms of epistemic error, such as the model

form error.

It was posed by Helton that both aleatory and epistemic uncertainty could be addressed

within an evidence theory framework [61]. This approach was advanced by Bae et al. who

presented that aleatory uncertainties are appropriately handled by classical probabilitymeth-

ods whereas epistemic uncertainties are suited to evidence theory [62]. Their work also

developed a cost effective algorithm to predict the possibility bounds from the evidence

analysis. In evidence theory, input variables are def ned as bounded belief and plausibility

values. Belief bounds capture the expected range of a parameter and plausibility bounds

comprise the larger range of possible parameter values. The method’s predicted output

bounds the potential response based on belief, plausibility, and possibility. This approach

is useful in the presence of large uncertainties from various sources, but does not specif -

cally address model error quantif cation.

Logan et al. developed an approach to quantify parametric, model form, and numerical

discretization error based on the independent assessment of each [63]. The authors assume

that each term can be assessed independently but recognized that this is generally not the

case. The uncertainty is accounted for at the integral level, that is, a top-down approach that

does not consider the uncertainties at each of the components of the model. Three of the

four the def ned components of uncertainty, experimental data, numerical discretization,

and model parameter, are quantif ed using independent approaches. The remaining error is

then classif ed as model error.

Faccone et al. created a procedure to assess the uncertainty in experimental evaluation

of turbine engine IBR forced response [64]. Their effort is of particular interest since it de-

velops an approach to model uncertainty of airfoil response models. Chapter 2 develops an
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alternate approach that could augment the overall uncertainty analysis process developed

in the reference. Their approach models both experimental, sensor, and FEM modeling

uncertainty. The work models a sensor’s measurement uncertainty as a perturbation of a

nominal value by the product of a normally distributed random variable, εs = N(0, σs),

where σs is the sensor standard deviation, and a sensor noise parameter def ned as a per-

centage of the maximum response amplitude. The authors recognize that a more rigorous

def nition for εs may be needed when considering a given sensor type to account for its spe-

cif c characteristics. The process also accounts for uncertainty associated with the sensor’s

location as a random perturbation on the surface position. Model uncertainty is accounted

for by comparing experimental mode shapes, φ(e)
i , and model predicted mode shapes, φ(m)

i ,

using a linear combination of the ith model predicted mode shape and its frequency-wise

immediate neighbors through a set of weights (wi−1, wi, wi+1). The paper concludes that

modeling uncertainties reduce the conf dence associate with experimental response mea-

surement. They recognize that several other model uncertainties should be accounted for,

such as localized geometric variations. The method developed in Chapter 2 develops ex-

actly such an approach.

Hasselman developed an approach to create a model validation metric for transient dy-

namic model results [65]. The metric is based on an PCA analysis of two matrices of

transient response data, one experimental and one predicted. The left singular vectors,

diagonal matrix of singular values, and right singular vectors are used to def ne a set of

normalized PCA metrics. This approach avoids the need for modal matching between ex-

perimental and analytical PCA vectors and also reduces the number of metrics needed to

characterize the modeling uncertainty. The statistics of the metrics can also be used to

model uncertainty in a physical simulation.

Vinai et al. developed a statistical method for model uncertainty quantif cation that ac-

counted for the variation in model accuracy at changing operating conditions [66]. Their
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approach quantif ed the error between experiment and model as a function of testing con-

ditions and used a statistical clustering approach to divide the region into three separate

regions that showed the same statistical properties. These statistical properties are used to

create error PDF for each region and can be used to estimate the physical model’s uncer-

tainty in each region. The use of parameter specif c error is related to the approach taken in

Chapter 2 to quantify uncertainty. In Chapter 2, a more rigorous statistical analysis is ap-

plied that identif es both bias and random error as a function of specif c design parameters,

not just regions of the design space.

Red-Horse and Benjamin posed an approach to model uncertainty where random vari-

ables are comprised of PCE approximated equivalence classes constrained by the available

information [67]. Rather than conventional PDF to def ne random parameters, their work

used a probability triple, (Ω, S, P ), comprised of the sample space, Ω, a sigma algebra of

subsets of Ω, S, and a probability measure, P . Both the input parameters and response

are expanded with PCE. The method results in variables effectively bounded by upper and

lower bound CDF that def ne parameter and response uncertainty. In their example, expert

opinion information was used to develop the uncertainty in the parameters.

Vittal and Hajela developed two approaches for calculating probabilistic conf dence in-

tervals from response surface methods [68]. In this, they are specif cally addressing the

error associated with the approximate f t of the surface. This work is related to that of

Chapter 2 as they are both quantifying the error associated with an approximate model.

Their f rst method used three def ned limit states to obtain upper, mean, and lower failure

probability values at a design point of interest. The second approach was a closed form

solution to predict conf dence intervals for predicted reliabilities obtained using the Mean-

Value First Order Second Moment (MV-FOSM) method. Each of the proposed methods

is applicable to quadratic response surface approximations based on DOE stratif cation of

the sample space. Their work accounted for uncertainty in the regression parameters of the
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response surface caused by the lack of f t of the response surface.

From the review of these prior works, it is identif ed that a newmodel error quantif cation

approach is needed. The approach should objectively quantify error rather than relying on

subjective expert judgment. It should model the error as a function of design parameter to

account for variations in error across the design space. Developing an approach to model

the error associated with local geometry deviations will also contribute to the conf dence

in turbomachinery dynamic response testing. The efforts in Chapter 2 accomplish these

goals.

1.3.2 Statistical Uncertainty Quantification Research

Statistical uncertainty quantif cation has been researched to a limited degree. In proba-

bilistic analysis, random variables are described as probability density functions def ned by

distribution type (e.g. normal, lognormal) and statistics (e.g. mean, standard deviation).

It is typically assumed that the statistics are known without uncertainty, that is, you have

ideally quantif ed the population statistics. In reality, because of the limited data sets used

to quantify distributions, uncertainty exits.

Bayesian analysis is a classical approach for modeling uncertainty in the statistics of

variable design parameters [45]. With it, unknowns, such as a population mean, are treated

as random variables. The unknowns are def ned as Bayesian priors and are typically based

on subjective expert judgment. When new data is collected, the Bayesian methodology

updates the prior estimation based on the likelihood function of the new data to produce

a posterior distribution that ref ects the current state of knowledge. Monte Carlo Chain

Monte (MCMC) analysis is frequently used to draw samples from the posterior distribution

in an eff cient manner [69]. A common criticism of Bayesian analysis is in the ambiguity

involved with def nition of the prior information. A less common criticism is that when
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conducting a probabilistic analysis for the purpose of failure probability prediction, a sin-

gle value is predicted based on the failure limit and the posterior distribution. From an

engineering perspective, there is value in accounting for the uncertainty in the parameters

of the statistics, sometimes called hyperparameters, in such a way that either a distribution

of failure probability or conf dence bound is predicted.

Early works in propagating statistical uncertainty were based on approximate reliability

methods using the safety index. Der Kiureghian and Liu demonstrated the prediction of

mean, median, maximum likelihood estimates, and bounds of a safety index from uncertain

statistical parameters [70].

Wirshing posed a f rst-order expansion of the failure probabilities to predict bounds of

the failure probability [71]. It is based on the FORM prediction of failure probability. The

upper and lower bound is computed at a selected conf dence level, α, and used to deter-

mine a distance offset from the expected MPP by a linear approximation. The approach is

computationally eff cient, but the accuracy is dependent on the linearity of the limit state.

As a f rst approximation, the approach is valuable.

Torng and Thacker posed a probabilistic method to assess reliability for structural prob-

lems with uncertainties due to estimation, modeling, and human error [72]. They def ned

that aleatory uncertainties are ref ected in the calculated reliability, whereas epistemic un-

certainties are ref ected in conf dence bounds. They proposed that an iterative procedure

and a fast convolution method calculate the aleatory reliability and that, for the epistemic

uncertainties, a nested approach predict conf dence bounds. The nested approach uses ran-

dom sampling from the distribution def ning the variation in statistical model. This is some-

times referred to as an “outer-loop” sample with an “inner-loop” reliability analysis that

predicts failure probability based on the sampled statistic. The authors recommended mod-

eling aleatory uncertainty with probability distributions and statistical uncertainty, from

lack of data, applied classical statistical conf dence bound methods to the small data sets to
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get objectively def ned hyperparameters. This approach is also used in Chapter 3.

Torng and Thacker soon developed an alternate approach that conducted the nested prob-

abilistic analysis using an approximation function based on probabilistic sensitivity factors

[73]. Probabilistic sensitivity factors are calculated at the Most Probable Point (MPP) of

the standard normal space that identif es the shortest distance between the origin and the

limit state. Effectively these are the sensitivities of the safety index, β, with respect to a

deviation in a random statistic. When assuming a linear limit state, β is transformed to a

failure probability based on the standard normal distribution. The variation of β with re-

spect to variation in random parameters is approximated as a Taylor series expansion at the

converged MPP value and the probabilistic sensitivities. This is an approximate approach

as the perturbations away from the converged MPP value will no longer lie on the limit

state.

Mehta et al. assessed the uncertainty quantif cation approaches of Torng and Thacker in

addition to a f rst-order approach developed byWirshing, full nested MCS, and a regression

approach where the response function is approximated with a response surface [74]. They

also posed to combine both model and statistical uncertainty into a single quantity, a design

interval. Statistical uncertainty was quantif ed with classical statistical conf dence bound

methods. The regression approach approximates the computationally expensive perfor-

mance function and inner-loop MCS is based on the approximation. They concluded that

the full nested outer- and inner-loop approach is the most accurate but had obvious compu-

tational costs, and that the approximate methods were eff cient but had potential accuracy

issues.

Venkataraman et al. developed several approaches to calculate conf dence bounds for the

safety index, β [75]. The f rst used a nested MCS approach with Latin hypercube sam-

pling at both levels. The second used a single MCS to calculate failure probability and

sensitivities of the failure probability to the distribution parameters. Sensitivities are then
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used to develop a local linear approximation of β using a linear Taylor’s series expansion.

The sensitivities were calculated numerically via Karamchandani’s approach so each sen-

sitivity calculation does not require re-evaluating the limit state function [76]. Chapter 3

expands on this approach and uses gradient-enhanced Kriging as a failure probability ap-

proximation. The third approach uses response surface approximation f tted to the limit

state function at MCS sampling points. It is based on a method developed by Melchers

and Ahammed that approximates the limit state function values at all the failed MC sample

points with a linear hypersurface [77]. This explicit form of the limit state function can then

be used for calculating the conf dence limits of β or failure probabilities using the FORM.

The fourth method shown was a nested FORM approach where a linear expansion of β at

the MPP is used to approximate the the reliability index at a conf dence interval, βα. This

process is repeated until convergence to a limit state condition. The developed approaches

were demonstrated on a cantilever beam example and showed that all four methods predict

conf dence bounds within a few percent of each other.

Picheny et al. developed a method for predicting an MCS-predicted conservative esti-

mate of failure probability based on the uncertainty in sample statistics using a single MCS

simulation [78]. Their approach focused on providing a conservative estimate of the in-

put statistics, as def ned by Cumulative Distribution Functions (CDFs), and using a single

MCS reliability calculation to predict the conservative estimate. They found that using

conservative estimates of the CDFs were overly conservative when compared to a boot-

strapping simulations and that bootstrapping was only acceptable when large data sets (e.g.

100 values) were available. These conservative estimates of CDF show the challenge of

using subjective information for uncertainty quantif cation.

Cruse and Brown developed an eff cient approach to propagate Bayesian statistical un-

certainty by approximating the inner-loop failure probability calculation using a failure

probability response surface [79]. This surface was a function of the statistical parameters

37



and was developed using a Design of Experiments (DOE) training set of MCS-predicted

failure probabilities. While the quadratic response surface used was effective in the exam-

ple problem, complex responses may require advanced approximation tools. Further, since

each surface training point requires a full MCS, accurate and eff cient regression techniques

for a given set of training points are desired. The method developed in Chapter 3 extends

this approach by using a more advanced surface regression approach.

Bichon et al. discussed the application of Bayesian inference coupled with Eff cient

Global Reliability Analysis (EGRA) to problems with statistical uncertainty [80]. The

approach is based on using EGRA as a surrogate model for failure probability as a function

of statistical parameter [81]. EGRA locates multiple points on the limit state throughout the

uncertain space and uses the points to construct a Gaussian stochastic process model that

provides a global approximation for the entire limit state. With this surrogate, uncertainties

in hyperparameters def ned as Bayesian priors are eff ciently propagated to a distribution

of failure. An adaptive importance sampling approach is used calculate the probability of

failure from the Gaussian process model.

From the review of these prior works, it can be seen that a new method for statistical un-

certainty quantif cation is needed. The approach should not subjectively model uncertainty

to provide defensible estimates of error. The method should not rely on the safety index as

a failure probability approximation since the approach is susceptible to unquantif ed error.

The approach should also accurately create a surrogate model for failure probability that is

more eff cient than traditional response surface methods. These requirements are all met

by the developments in Chapter 3.
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1.4 Summary of Research Need

Based on the review of the existing research, advances to reduced-order mistuning mod-

eling, model uncertainty quantif cation, and statistical uncertainty quantif cation can make

signif cant contributions to turbomachinery design.

Advanced to reduced-order mistuning modeling would address the current limitations of

nominal-mode methods. Their f rst limitation is that they rely on nominal-mode approx-

imation of response and use airfoil modal stiffness perturbations to represent mistuning.

This approximation does not account for the geometric deviation on mode shapes, and for

modes where this is signif cant, errors will be introduced. Airfoil geometric deviations

alter their structural mode shapes the nominal mode approximation introduces a quantif -

able error. The errors that this introduces have not been quantif ed in the existing body of

research since validation studies have only considered Young’s modulus mistuning. De-

velopment of a geometric mistuning model, as in Chapter 4, will improve accuracy and

improve integration with the design process.

A geometric mistuning approach has been developed by Sinha [32], but it has its own

limitations. First, while an effective ROM, there can still be large computational costs

associated with the transformation of physical sector DOF to the new basis, particularly

when there are a large number of DOF in the disk. Second, it requires full model solutions

from multiple, potentially large, sector models. Third, the approach is an approximate

basis that is not the most eff cient basis for the solution. Finally, Sinha’s work also did

not demonstrate the use of the nominal-mode approximation for the problem, and therefore

did not fully demonstrate the need to account for non-nominal modes. A CMS approach,

developed in Chapter 4, would alleviate these problems by partitioning the substructures so

that DOF associated with the disks would not need to be solved for each retained geometry

model.
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The developed geometric mistuning model of Chapter 4 includes approximation of air-

foil substructure modal response. In the development of approximations, there will always

be errors. There is also a need to develop approximate models for blade-alone response

that provide input to mistuning models and account for their approximation error. From

the review of prior works, it is identif ed that a new model error quantif cation approach is

needed. The approach should objectively quantify error rather than relying on subjective

expert judgment. It should model the error as a function of design parameter to account

for variations in error across the design space.Developing an approach to model the error

associated with local geometry deviations will also contribute to the conf dence in turbo-

machinery dynamic response testing. The efforts in Chapter 2 accomplish these goals.

From the review of these prior works, it can be seen that a new method for statistical un-

certainty quantif cation is needed. The approach should not subjectively model uncertainty

to provide defensible estimates of error. The method should not rely on the safety index as

a failure probability approximation since the approach is susceptible to unquantif ed error.

The approach should also accurately create a surrogate model for failure probability that is

more eff cient than traditional response surface methods. These requirements are all met

by the developments in Chapter 3.

1.5 Research Summary

Design of structural components is constrained by both iteration time and prediction uncer-

tainty. Iteration time refers to the computation time each simulation requires and controls

how much of the design space can be explored given a f xed period. Prediction uncertainty

refers to both irreducible uncertainties, such as those caused by material scatter, and re-

ducible model uncertainty, such as the simulation error of the physics-base model. In the

presence of uncertainty, conservative safety factors and design margins are used to ensure
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structural integrity, but that also negatively impact component weight and design life. This

research investigates three areas to improve both iteration time and uncertainty quantif ca-

tion for turbomachinery design.

The f rst develops two reduced-order models that predict the effect of geometric devi-

ations on airfoil forced response. A Principle Component Analysis approach is used to

create a reduced-basis set of geometric perturbations that also statistically characterized

the deviations. The f rst reduced-order response model is based on eigensensitivity calcu-

lations of the modal response with respect to the reduced geometry basis and a f rst-order

Taylor series expansion. The second reduced-order model accounts for the approximation

error between the Taylor series approximation and full models. A small set of randomly

generated full-order model solutions are used to quantify the discrepancy between full and

approximate solutions. A regression analysis between the reduced-basis set of geometry

perturbations and the discrepancy is used to quantify both bias and random uncertainty

of the approximation. When included in the eigensensitivity approximation of modal re-

sponse, this error-quantif ed approximation shows signif cant improvements in accuracy,

because of its bias correction, and description of uncertainty, through the remaining ran-

dom error.

The second research area develops a Probabilistic Gradient Kriging approach to eff -

ciently model the uncertainty of failure probability predictions caused by the sampling

error from small sample statistics. A Kriging approximation based on both failure prob-

ability values and gradients is used as a reduced-order model of failure probability as a

function of statistical parameter. Probabilistic gradients are obtained though a numerical

approximation that obtains sensitivities without the need for costly f nite difference approx-

imations based on additional probabilistic simulations. It is shown that the Probabilistic

Gradient Kriging approach is signif cantly more accurate for a given number of training

points when compared to conventional Kriging and polynomial regression approaches. It
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is further found that the impact of statistical uncertainty from small sample sizes can lead

to uncertain failure probabilities that can be an order of magnitude greater than the true

value.

Reduced-order methods have been developed that rapidly predict mistuned rotor re-

sponse by approximating mistuning with a nominal-mode basis and airfoil modal stiffness

perturbation. Nominal-mode approximation assumes that the geometry of each airfoil is

identical and the geometric perturbations that alter modal stiffness do not perturb mode

shape. This work investigates the accuracy of that approximation and develops several

Component Mode Synthesis based reduced-order mistuning models that explicitly account

for geometric deviations using both nominal and non-nominal mode shape approaches. The

f rst represents the prevailing industry method and uses nominal-mode substructure reduc-

tion with airfoil substructure modal stiffnesses perturbed using geometrically-perturbed

cantilevered airfoil f nite element models. This approach demonstrates effective quali-

tative predictions that identify relative mistuning amplif cation but, when compared to

analytical results from a geometrically-perturbed integrally bladed rotor model, shows

signif cant (∼20%) errors in maximum predicted mistuning amplif cation. For blade-to-

blade response prediction at specif c frequencies, dramatic (>100%) errors are demon-

strated. The second approach uses nominal-mode substructure reduction and mistuned

airfoil modal stiffness perturbations from reduced-order modal methods. The reduced-

order airfoil model reduces computational time while enabling qualitative mistuning pre-

diction. The third method uses nominal-mode substructure reduction, mistuned modal stiff-

nesses from geometrically-perturbed airfoil f nite element models, and expands results with

a non-nominal Craig-Bampton matrix for each airfoil. Though improvements in quantita-

tive prediction of maximum response frequency and response amplitudes are found for all

modes, the method was inconsistent. The fourth approach uses non-nominal mode sub-

structure reduction and expansion using non-nominal Craig-Bampton matrices generated
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from geometrically-perturbed f nite element models. This approach demonstrates excellent

prediction of peak mistuning amplif cation and blade-to-blade response with prediction er-

rors below 1%. A f fth approach uses reduced-order modal methods to approximate the

non-nominal Craig-Bampton matrices. Use of these approximate mode shapes is found to

signif cantly improve accuracy compared to the nominal-mode assumption but that overall

performance is dominated by accurate frequency approximation. It is concluded that for

rapid qualitative analysis, nominal-mode mistuning analysis with approximate mistuned

modal stiffnesses should be used, for improved accuracy with additional computational ex-

pense approximate non-nominal mode mistuning analysis should be used, and with greater

solution time and need for quantitative accuracy, geometrically perturbed f nite element

model results should be used in non-nominal Craig-Bampton reduction and expansion.
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Figure 1.1: Turbojet Engine Schematic
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Figure 1.2: Example Goodman Diagram

Figure 1.3: Integrally Bladed Rotor
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Figure 1.4: Example Campbell Diagram
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Figure 1.5: Tuned Response (solid line) versus Mistuned (Dotted)
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Figure 1.6: Dye and Henry Spring-Mass Model
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2 Reduced-Order Model

Development for Airfoil Forced

Response

Abstract

Two new reduced-order models are developed to accurately and rapidly predict geome-

try deviation effects on airfoil forced response. Both models have signif cant application

to improved mistuning analysis. The f rst developed model integrates a Principal Com-

ponent Analysis approach to reduce the number of def ning geometric parameters, semi-

analytic eigensensitivity analysis, and f rst-order Taylor series approximation to allow rapid

as-measured airfoil response analysis. A second developed model extends this approach

and quantif es both random and bias error between the reduced and full model. Adjusting

for the bias signif cantly improves reduced-order model accuracy. The error model is de-

veloped from a regression analysis of the relationship between airfoil geometry parameters

and reduced-order model error, leading to physics-based error quantif cation. Both models

are demonstrated on an advanced fan airfoil’s frequency, modal force, and forced response.
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2.1 Introduction

Effective airfoil dynamic response analysis ensures rotor reliability and requires prediction

of resonance avoidance margin, forced response, and mistuning. Standard practices predict

dynamic response using Finite Element Models (FEMs) of design intent geometries. While

suff cient for some cases, this standard approach does not explicitly consider airfoil struc-

tural response variations caused by random manufacturing deviations from design intent

geometries. Because hundreds or thousands of these simulations would be required to as-

sess effects from random variations, a new more eff cient airfoil modal and forced response

prediction process is required.

Existing literature contains a signif cant body of work developing eff cient mistuned rotor

forced response predictions using reduced-order models (ROMs) [19, 16, 29, 12, 23, 25].

These efforts have shown strong amplif cation of rotor forced response caused by small

perturbations in blade-to-blade frequency. While effective, these prior models are limited

in two signif cant ways. First, they assume that airfoil frequencies vary but airfoil mode

shapes remain nominal. This assumption enables computational eff ciencies but geometric

deviations clearly alter blade-to-blade mode shapes, thus altering each blade’s modal force,

and impacting mistuned response. Their second limitation is the required experimentally

obtained blade-to-blade frequency variation input. Such empirical measures are subject to

error, particularly for Integrally Bladed Rotors (IBRs) and the known challenge to isolate

their individual airfoil frequencies from the rotor system response. These experimental re-

sults also are not connected to airfoil geometric parameters that can be controlled in the

design process for acceptable frequency scatter manufacturing. Because of these limita-

tions, physics-based ROMs of airfoil modal and forced response that explicitly account for

geometric deviations are needed that provide accurate input to existing mistuning models

and include frequency scatter in design. Further, since existing mistuning prediction meth-
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ods do not consider mode shape variation, a ROM is needed to show the signif cance of

mode shape variation on forced response and lead to future improved mistuning analysis

tools.

ROM development begins with an approach to create a reduced set of geometry parame-

ters def ning manufacturing variation. Previous efforts in reduced-order airfoil geometry

modeling include Garzon and Darmofal’s use of Principal Component Analysis (PCA)

[33]. The PCA approach is a common statistical method that creates a reduced basis space

through an eigenanalysis of the covariance between parameter deviations [82]. The re-

search demonstrated the effectiveness of the technique for turbomachinery applications.

An alternate approach was demonstrated by Capiez-Lernout et al. in their development of a

technique characterizing manufacturing tolerances for mistuned bladed disk with a disper-

sion parameter [41]. This ad-hoc estimation of the geometry effects on response does not

directly depend on measured geometry but does have computational advantages. Because

the PCA approach is directly related to measured deviations, it is applied in this ROM

development.

With a reduced geometry model determined, development of a reduced-order response

method remains. Taylor series approximations are an attractive method assuming that the

required sensitivities can be eff ciently calculated. Methods to rapidly predict sensitivi-

ties of modal response, or eigensensitivities, have been developed by Fox and Kapoor for

unique eigenproblems and Friswell for cyclic symmetry problems [83, 84]. These equa-

tions are semi-analytic and allow sensitivity calculation from a single FEM solution with

eff ciency improvements described later. Such approaches have been widely used in opti-

mization applications, but not for airfoil modal response approximation over the range of

manufacturing deviations considered in this effort.

With these existing tools the f rst of two airfoil response ROMs, the standard ROM, is

developed. First, PCA is used to create a reduced basis set of the manufacturing deviations.
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Eigensensitivities are then eff ciently calculated semi-analytically with respect to this new

basis, and these are used in a f rst-order Taylor series modal response approximation. These

approximate modal quantities are then used in a modal domain forced response analysis.

When combined, the integrated approaches lead to an exceptionally eff cient and accurate

model.

Though accurate, as with all approximations, there is error. Model errors have been

widely recognized as critical to the design and analysis process and the need for its ac-

counting has been outlined in several professional editorial policy papers [85, 86]. In this

research a second ROM is developed, an error-quantif ed ROM, that captures the error de-

veloped in the model reduction process. This a posteriorerror model requires a linear

regression model of the errors obtained between a limited number of full model and stan-

dard ROM comparisons. Results from the model are able to reduce the standard ROM error

and quantify the approximate model uncertainty.

It is noted that these models do not account for the impact of geometric deviations on

unsteady aerodynamic loading. While this may be an important factor in the prediction of

forced response, the development of a reduced-order model for aerodynamics is an ongoing

challenge not considered in this research.

The following sections develop the two ROMs. How measured airfoil deviations are

reduced to a practical number of parameters with PCA is def ned in Section 2.2. Section

2.3 develops the standard reduced-order modal and forced responsemodels, and Section 2.4

introduces the error-quantif ed ROM. These sections are followed by results from a real-

world component that show the signif cance of geometric deviations from design intent

and demonstrate the accuracy of both developed models. The application of these new

tools provide improved input to existing mistuning prediction models, show the effect of

geometrically induced mode shape variation on forced response, and create a model that

can be used for future mistuning tool developments.
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2.2 Reduced-Order Airfoil Geometry Model

In the past, deviations from design intent have been checked with templates and manual

gages. Such devices are pass-fail tools providing no quantitative response information

back to the engineer. Because of the rotor response sensitivity to geometric variations,

new measurement techniques are desired. One approach uses coordinate measurement ma-

chines (CMMs) that collect data through a geometry traversing probe that obtains spatial

data points at regular intervals. Each measured airfoil may provide thousands of measured

data points. Assessing the sensitivity of each of these locations to perturbation would re-

quire signif cant computational resources, hence the need for a reduced-order geometry

model retaining a limited set of parameters quantifying geometry deviations. PCA is at-

tractive given its ease of implementation and the creation of minimum a set of retained

basis vectors to represent fully correlated geometry variations.

PCA is implemented by storing n measured three-dimensional coordinate data points in

vector x ∈ R
3n. A set of p measured airfoils results in matrix, X ∈ R

3n,p. Since we are

interested in variations from the average blade, the mean value of each row is subtracted

from each member of the row to give a matrix of measured deviations, ∆X, where each

element is

∆xi,j = xi,j − x̄i i = 1, 2, . . . , 3n; j = 1, 2, . . . p (2.1)

where x̄i is the average of the ith row. It is important to note that the average, x̄i, is not

necessarily the original design intent. Also, subtracting the row mean from each element

makes the expected value of each row zero. The f rst-order covariance matrix of ∆X de-

f nes the statistical relationship between a measurement point deviation and all other points,

and its eigensolution leads to eigenvectors that can be used to form a new subspace opti-

mally representing variation. This is written in standard eigenproblem form
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Cov(∆X)Ψ = ΨD (2.2)

whereD andΨ are the eigenvalue and eigenvector matrices, respectively. The eigenvectors

are the principal components modes of the measured data, and the eigenvalues are the

principal component variances that indicate the data variance each principal component

captures. Based on these eigenvalues, graphical and statistical methods can be used to

retain a limited set of basis vectors. Also of importance, the principal components are

orthogonal, and therefore, uncorrelated statistically. The PCA transforms a large set of

correlated parameters into a small set of uncorrelated parameters.

Transformation of the measured deviations, ∆X, to the principal component basis re-

quires the linear operation

Z = ΨT [∆X] (2.3)

where the eigenfunction matrix is multiplied by the deviation matrix to give the z-score

matrix, Z ∈ R
m,p withm the number of retained principal component modes. These scores

are effectively regression coeff cients for the new principal component basis and def ne the

participation of each PCAmode in each measured geometry. The above algorithm, Eq. 2.1-

2.3, is the covariance method of PCA and the columns of Z represent the Karhunen-Loeve

transformation.

How these z-scores and principal component modes are integrated into a reduced-order

forced response model is described in the following section.
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2.3 Standard Blade-Alone Forced Response

Reduced-Order Model

The approach used in this ROM development is Taylor Series approximation using f rst-

order sensitivities. Sensitivity calculations can be computationally expensive when calcu-

lated numerically via f nite difference methods that require a FEM evaluations for each

design parameter. This work proposes to use semi-analytic methods that replace the costly

calculations of the process, i.e. decomposing the stiffness and mass matrix and solving the

matrix eigenvalue problem.

Combining the semi-analytic sensitivity methods def ned in [87] with the reduced-order

geometry model results from Section 2.2 leads to the following principal component mode

response sensitivities

∂λi
∂ψj

= φTi

(

∂K

∂ψj
− λi

∂M

∂ψj

)

φi (2.4)

∂φi
∂ψj

=
r
∑

g=1

cigφg (2.5)

where i identif es the vibration mode number, j the principal component mode number, and

where r is the total number of retained vibration modes. The constant terms are calculated

cig =
φTg

(

∂K
∂ψj

− λg
∂M
∂ψj

)

φi

(λg − λi)
(2.6)

cii = −1

2
φTi
∂M

∂ψj
φi (2.7)

where λi and φi are eigenvalue and mass-normalized eigenvector, K and M are mass and

stiffness matrices, and ψj are retained principal component modes. The stiffness and mass
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matrix derivatives are numerically computed through nominal and perturbed f nite element

models. Forced response sensitivity can also be calculated directly, but is not done so here

because of the need to explicitly retain frequency and mode shape sensitivities for use as

input to mistuning and modal force predictions.

Prediction of modal stress sensitivity requires the derivative of the strain-displacement

equation. Differentiating this equation with respect to the jth principal component mode

gives
∂σi
∂ψj

= DB
∂φi
∂ψj

+ D
∂B

∂ψj
φi (2.8)

where D is the elasticity matrix, B is the strain-displacement matrix, and σi is the stress

vector of the ith vibration mode. As with the mass and stiffness matrices, the sensitivity of

the strain-displacement matrix is calculated numerically.

Once the sensitivities have been computed, the standard ROM eigenvalues and eigenvec-

tors are computed with a f rst-order Taylor series expansion. The approximations are

λ̃i = λ0
i +

m
∑

j=1

∂λi
∂ψj

dψj (2.9)

φ̃i = φ0
i +

m
∑

j=1

∂φi
∂ψj

dψj (2.10)

where λ0
i and φ0

i are the average eigenvalue and eigenvector results and the tilde symbol an-

notates an approximation. The increment dψj is the jth z-score value for a given measured

airfoil. A f rst-order approximation was chosen over higher-order methods because of its

simplicity and its accurate performance in the demonstration problem. Further work ex-

ploring the use of higher-order methods does have merit should a situation be found where

the current approach has unacceptable accuracy.

The forced response ROM is based on modal domain transformation of the equation of

motion using the approximate values for eq. 2.9 and 2.10 while assuming harmonic forcing
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and motion

(−ω2
f + i2λ̃iωfζi + λ̃2

i )α̃i = φ̃Ti f (2.11)

where ωf is the forcing frequency, ζi the modal damping, φ̃Ti f the approximate modal

force, and α̃i the approximate modal coordinates

α̃i =
φ̃Ti f

(λ̃2
i − ω2

f) + i(2λ̃iωfζi)
(2.12)

which gives the participation of the ith approximate mode. The approximate displacement

vector, ũ, is computed in the approximate modal domain

ũ = Φ̃α̃ (2.13)

where the algebra represents modal summation.

While the ROM presented in this section does reduce the costly modal analysis proce-

dures from expensive matrix computations to simple arithmetic, there is error introduced

in the approximation. The next section describes how to improve this model using the

developed error-quantif cation technique.

2.4 Error Quantified Reduced-Order Model

Models in general have an unquantif ed error between their result and the true value. Ac-

counting for this error and providing an error bound on the result ensures proper model ap-

plication. This section develops an approach to quantify the error between the eigensensitivity-

based approximate models developed in Section 2.3 and full FEM solutions. This quan-

tif cation includes analysis for reducible errors related consistently to design parameter
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variations, i.e. bias, and random errors that are irreducible without modifying the model

form. This error quantif cation approach is used to reduce error instead of pursuing higher-

order approximation methods to avoid the complexity and to develop the error quantifying

approach that is applicable to even these more advanced approximations.

The developed error model is an a posteriormodel that requires comparison of a limited

number, k, of full solutions to the standard ROM. These models are referred to as training

models that provide the error analysis data. The error is quantif ed as the discrepancy vector

between standard ROM and full model results.

δk = f(zk) − f̃(zk) k = 1, 2, . . . , p (2.14)

where the functions represent the simulation of a modal response at the kth vector of z-

scores def ning an airfoil, and the tilde represents the standard ROM approximation. Analy-

sis of the relationship between the vector δ and the components of zk determines the ex-

istence of a physical relationship between principal component mode magnitude and dis-

crepancy. A discrepancy model as a function of z-scores is constructed from the regression

analysis

δ = Fβ + ε (2.15)

whereF is a matrix of def ned regression functions, β is a vector of unknown regression co-

eff cients, and ε is a normally distributed zero mean error term. In the error-quantif ed ROM

the regression functions are components of the Z matrix that def nes the airfoil geometries.

As an example, the matrix form for a regression model that includes a constant and all

linear terms is
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F =



















1 Z1,1 Z1,2 · · · Z1,p

1 Z2,1 Z2,2

... . . .

1 Zm,p



















(2.16)

where the f rst column is the regression coeff cient for the constant model term, b0. Should

the discrepancy data show nonlinear characteristics, additional non-linear regression terms

can be added. The regression coeff cients are determined so that the error between the

regression model and the data is minimized through solution of the linear least-squares

problem

(

F
T
F
)−1

F
T δ =



















b0

b1
...

bm



















(2.17)

where the b values are the most likely estimates of the regression coeff cient vector, β.

The error term, ε, should be uncorrelated, normally distributed with zero mean and con-

stant variance for statistical modeling assumptions to be met that allow conf dence interval

prediction. The linear model developed from eq. 2.15 is added to the approximate model

developed in Section 2.3 to develop the error-quantif ed ROM for the pth airfoil

λ̃i = λ0
i +

n
∑

j=1

∂λi
∂ψj

dψj +
(

z
∗
p

)T
β + εp (2.18)

φ̃i = φ0
i +

n
∑

j=1

∂φi
∂ψj

dψj +
(

z
∗
p

)T
β + εp (2.19)

where z
∗
p is the vector of z-scores for the pth airfoil with the addition of a leading value

59



of one to account for the constant b0 term. Because the error terms are modeling error as

the difference between full FEM and standard ROM, the addition of these terms reduces

the error. Predictor variables, members of β, are only included in the model if they show

statistical signif cance to the error. An advantage of this process is that the PCA produces

an orthogonal set of predictor variables which simplif es determination of the parameter

signif cance. These error-quantif ed modal quantities are then used in an error-quantif ed

forced response solution using the modal domain approach from the previous section.

2.5 Numerical Results

The sensitivity of blade-alone modal and forced response to geometric deviations from

design intent and the effectiveness of both the standard ROM and error-quantif ed ROM

is shown on an advanced sixteen-bladed low aspect ratio IBR. This IBR, the Advanced

Damping Low Aspect Ratio Fan (ADLARF), has been rigorously studied under the GUIde

Consortium, a joint government, university, and industrial program to fund research in tur-

bomachinery forced response [88, 89, 90]. Because airfoil geometry measurements are

not available for this rotor, measured deviations from a related industrial IBR fan stage are

used. Full FEMs of the as-measured models of the sixteen airfoils are used to assess sen-

sitivity to variations from design intent, create the error model training data, and quantify

the accuracy of the two developed ROMs. While these ROMS do not directly provide mis-

tuning results, they provide the required data for previously referenced mistuning models

that account for structural coupling.

Modal calculations were made with a blade-alone f nite element fan blade model. The

blade approximately spans 12 inches with a 9 inch chord length. The model contains linear

hexahedral elements with an element edge length on 0.25 inches, resulting in 7722 degrees-

of-freedom, uses common Ti 6Al-4V material properties, and all degrees of freedom are
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f xed at the blade root. This is a high quality, but not fully converged model, that was used

to reduce computational requirements during the development process. A more rigorous

converged mesh analysis was conducted to ensure that the unconverged model does not

impact any of the research conclusions. The converged model had nearly 50,000 degrees-

of-freedom and frequency variation results for the as-measured models, for the twentieth

and most complex mode, were within a maximum of 0.02 percent between the investigated

and converged model. This demonstrated that the geometric deviations had nearly the same

percentage effect on response variation regardless of mesh density.

Results are obtained from the f rst twenty modes, covering responses from f rst f ex at

360 Hz. to approximately 7,000 Hz. Figure 2.1 shows the mode shapes for the f fteenth

and sixteenth mode, which are discussed in greater detail in subsection 2.5.2. The models

were created parametrically with the coordinate measurement machine data points used

as the parameters. With this model, airfoil geometry variations were automatically gener-

ated through a script f le and mesh topology remained consistent with each model. Post

processing was also conducted through scripting to ensure error-free result tabulation.

2.5.1 Reduced-Order Geometry Model Results

An available set of compressor airfoil measured geometry deviations and the ADLARF

nominal geometry provided representative as-measured geometry. Figure 2.2 shows one

measured geometry deviation prof le representative of the remaining airfoils, both as a

blade surface contour plot and a three dimensional surface plot. Correlation between sur-

face deviation across the blade is evident and shows that a reduced-order geometry model

should account for spatial correlation. The measurement also shows negative deviations

near the tip and positive deviations near the base. Such a pattern could be developed from

variations in the vertical alignment of the part during manufacture. The probability distri-
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bution of the set of all measured deviations is non-Gaussian, has a mean value of nearly

zero, a standard deviation of 0.003 in., a minimum of -0.015 in., and maximum of 0.011 in.

PCA of the sixteen measured blades generates f fteen principal components,Ψ ∈ R3n,15.

Figure 2.3 shows the percentage total variance of each principal component mode, and it is

shown that the f rst f fteen modes capture all measured deviations. As expected, the modes

are ordered by decreasing variance modeling. Because f fteen features fully describe the

blade geometry deviations, there is a signif cant computational cost reduction associated

with the Taylor series approximations. If PCA had not reduced the geometry deviation

degrees-of-freedom to f fteen, one sensitivity calculation would be needed for each FEM

surface node degree-of freedom, requiring nearly 2,700 simulations.

2.5.2 Standard and Error-Quantified Reduced-Order Model

Results

The ROMs developed in Sections 2.2 and 2.3 are demonstrated on the as-measured rotor.

Each subsection f rst includes results showing the full FEM predicted response variations

of the sixteen as-measured airfoils. These results justify the need to account for geomet-

rically induced variations. The subsections then continue to show the ROM’s accuracy in

predicting blade-to-blade variations for a selected critical mode, provides the training data

used to determine the model bias and random error, and the two ROM’s maximum errors

over the f rst twenty modes.

2.5.2.1 Frequency Results

The IBR frequency variation predicted from the sixteen as-measured airfoils for the f rst

twenty modes, normalized by the average frequency, is shown in the Figure 2.4 box-and-

whisker plot . A box-and-whisker plot displays the four quartiles of data for each data set,
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displaying the median as the horizontal dash bisecting the rectangular box into the f rst

upper and lower data quartiles. The dashed vertical lines attached to these boxes show the

upper and lower second quartiles. Addition symbols are for outlier data. Results show

the largest frequency variation interval covering greater than ±2% of the average value for

sixteenth mode with the mean range of variation for all modes nearly ±1%. It is seen that

the normalized frequency deviation does not appear to signif cantly increase with increas-

ing mode number because of the normalization. The absolute variation in frequency does

increase with mode number. Further analysis of the coeff cient of variation, the data mean

divided by its standard deviation, does show an increasing trend in normalized variation.

While these are small deviations, they are in a range shown to lead to maximum mis-

tuning amplif cations. The close proximity of blade-to-blade frequencies causes multiple

mode excitations at a single forcing frequency and summation of modal energy. Mistuning

response will be highly sensitive to the exact pattern, so accurate prediction of each blade

frequency is required. The predicted frequency variations can provide the necessary input

to existing mistuned forced response ROMs and avoids experimental frequency measure-

ment. Explicit geometric modeling also physically links design parameters to the frequency

variations that lead to mistuned amplif cation. Understanding gained through these ROMs

can lead to design changes or manufacturing process controls that will lead to improved

IBR reliability.

Figure 2.5 shows the comparison between the predicted blade-to-blade IBR frequencies

from the full f nite element model, standard ROM, and the error-quantif ed ROM. Results

for the sixteenth mode are shown because it had the largest frequency scatter in the f rst

twenty modes, as seen in the box-and-whisker plot contained in Figure 2.4, and also has

the largest error between full model and standard ROM predictions as shown in Figure

2.7. Even though Figure 2.5 shows the ROMs at their worst, it is seen that the standard

ROM does an admirable job predicting blade-to-blade frequency deviations and captures
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the blade-to-blade trend in frequency deviation. Because mistuning is highly sensitive to

frequency magnitudes, a reduced error model is still desirable. Results show that the error-

quantif ed ROM greatly improved accuracy. The airfoils with the greatest error from the

standard ROM, three, four, eight, ten, f fteen, and sixteen show a marked improvement with

the error-quantif ed ROM.

The input for the bias and random error terms of the error-quantif ed ROM was con-

structed from the a posteriordiscrepancy analysis between full FEM and standard ROM.

Figure 2.6 shows the errors for the sixteenth mode plotted against the z-scores of the re-

tained principal component modes. There is a clear linear correlation between the residual

value and the z-score magnitude of the twelfth principal component mode, while all other

modes appear randomly distributed. This linear relationship was seen for all twenty modes.

Because there is a predictable trend between the residual and twelfth principal component

mode magnitude, the error quantif ed reduced-order model from eq. 2.18 and 2.19 will ac-

count for model bias and improve accuracy. Each mode has its own regression coeff cients

based on that mode’s data. The remaining error not accounted for as bias can be included

in the random error parameter of the error-quantif ed ROM.

It is noted that standard regression modeling practice avoids validating the model with

the data used to create the regression model. This practice was not followed for the results

shown. This is acceptable because the strong linear relationship in the data shows that

the result is more than a just a random phenomenon. Nonetheless, a set of 50 randomly

generated airfoil geometries based on the statistics from the PCA analysis were analyzed

with the full FEM and ROMs. These results did not change any of the conclusions based

on the sixteen as-measured airfoils and show that the error-quantif ed model is applicable

to the larger domain of random airfoils.

Figure 2.7 shows the maximum percent error between the two ROMs and the full FEM

for all twenty vibration modes. This maximum error is obtained for each mode by comput-
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ing the absolute difference between each ROM and full model, dividing by the full model

value for each of the sixteen airfoils, and plotting only the maximum of these sixteen er-

ror results. This is again a worst case look at the models and the average blade error of

the ROMs is signif cantly lower as can be seen in Figure 2.5. Figure 2.7 shows that while

the standard ROM had a maximum percent error below 0.5% for the f rst 10 modes and

below 1% for all but one of the remaining modes, the error-quantif ed ROM predicted

much improved results nearly identical to the full model. Error percentages from the error-

quantif ed ROM for the f rst twenty modes are below 0.1% error. The f gure shows that the

error-quantif ed ROM reduced the maximum percent error for all the f rst twenty modes

by well over 75%. While the standard ROMs accuracy may be considered suff cient, the

high sensitivity of mistuned response to variations on the order of its error indicates that

the error-quantif ed model may be more appropriate.

2.5.2.2 Modal Force Results

While frequency deviation has been a subject of study because of its relevance to frequency-

based mistuning ROMs, mode shape deviation has received limited investigation. In this

section the mode shape variations are not shown directly, instead the useful heuristic of

modal force deviations are shown because of its role in forced response prediction. Modal

force, the inner product of the mode shape and loading vectors, is the quantity on the right

hand side of the modal equation of motion, and its variation has a 1:1 correspondence to

forced displacement variation. Nominal unsteady loading predictions for a def ned har-

monic from a related IBR were used in the modal force calculation.

A modal force variation box-and-whisker plot for the as-measured IBR is shown in Fig-

ure 2.8. It is evident that these deviations are much larger than the frequency scatter. The

f rst signif cant variation in modal force is shown at the f fth mode with an upper bound

29% larger than the average value. Considering the set of the f rst twenty modes, several
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modes are observed with upper bounds near 20%, with mode f fteen notable for a 55%

upper bound. These signif cant variations in modal force directly impact variation in airfoil

forced response and these are not explicitly accounted for in current design or mistuning

analysis practices. These variations are in addition to those blade-to-blade stress variations

caused by mistuning, that should be accounted for to reliably predict forced response varia-

tions, and demonstrate the need for a eigenvector response ROM that accounts for geometry

variation.

Figure 2.9 shows the blade-to-blade comparison between the full FEM, the standard, and

error-quantif ed ROMs for the f fteenth mode modal force prediction. The f fteenth mode

was selected because the as-measured airfoil results for this mode had the largest modal

force variation, shown in Figure 2.8, and also has the largest error between standard ROM

and full models as seen in Figure 2.11. Again, this shows the two ROMs at their worst.

As seen in Figure 2.9, the standard ROM accurately captures the trend of modal force

variation. The error-quantif ed ROM improves the approximation for nearly all airfoils, in

particular the third, fourth, eighth, tenth, f fteenth, and sixteenth airfoil. These airfoils are

the same that were shown to have the largest frequency error, also had the largest modal

force error, and were also effectively accounted for by the error-quantif ed ROM.

The discrepancy calculated between the standard ROM and full FEM modal force so-

lutions of the as-measured IBR are plotted with respect to the airfoil z-scores in Figure

2.10. Again as with the frequency results, principal component mode twelve shows a linear

relationship between the error and airfoil z-score value. When compared to the frequency

residuals of Figure 2.6, the linear relationship is still obvious but with more random varia-

tion.

Figure 2.11 illustrates the maximum error between the full FEM and ROMs for the f rst

twenty modes. This maximum error is obtained for each mode by computing the absolute

difference between standard ROM and full model, dividing by the full model value for each
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of the sixteen airfoils, and plotting only the maximum of the sixteen errors. It is initially

observed that the errors are signif cantly larger than for frequency, but this is not unexpected

as the variations in modal force are signif cantly larger. For the f rst twenty modes, the

standard ROM performs adequately with more than half the modes below 5% and most

remaining modes below errors below 10%with the exception of the thirteenth, f fteenth and

nineteenth modes. The error-quantif ed ROM reduces the error for these modes in addition

to signif cant error reduction for the f fth mode. The error-quantif ed ROM reduces the

error for these modes by over 50%. In general it is seen that the error-quantif ed model is

providing a reduced benef t to the ROM when compared to the frequency results, but still

enables more accurate modal force prediction for the f rst twenty modes within 6% of full

model results. The remaining error can be accounted for with the error-quantif ed ROM

random error term.

2.5.2.3 Forced Response Results

While the variation in modal force is a signif cant contributor to forced response, it only

accounts for variations in mode shape displacements. Variations in modal stress and fre-

quency will also impact forced response variation and this section’s results account for

those effects. The maximum forced stress variation box-and-whisker plot is shown in Fig-

ure 2.12. Considering the set of the f rst twenty modes, several modes are observed with

upper bounds near 20%, with mode f fteen notable for a 68% upper bound.

Comparison of these plots to the modal force variation results of Figure 2.8 shows simi-

lar magnitudes of variation for each mode but closer inspection shows differences on many

modes. Mode nine’s upper bound on airfoil forced response is 38% greater than average

airfoil while its modal force upper bound was 19%. Mode f fteen shows a 68% increase

in upper bound stress while the modal force upper bound variation for the mode was 55%.

These 19% and 13% increase in stress upper bounds is caused by variations in the maxi-
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mum modal stress caused by geometric deviations. This demonstrates the importance of

accounting for modal stress variations in the developed ROMs.

The maximum forced stress blade-to-blade prediction is compared between the standard

ROM, error-quantif ed reduced-order ROM, and full model in Figure 2.13. The f fteenth

mode was selected because the as-measured results for this mode, shown in Figure 2.8,

had the largest forced response scatter and also has the largest error between full models

and standard ROM, shown in Figure 2.14. Figure 2.13 shows that the standard ROM does

a good job representing the full model results, and accurately captures the blade-to-blade

trend in forced stress values. The f gure also shows that the error-quantif ed ROM improves

the approximation for all airfoils, in particular the third, fourth, eighth, tenth, f fteenth and

sixteenth airfoil.

The a posteriortraining data used to create the error quantif ed reduced-order model is

not shown but is almost identical to Figure 2.10.

Figure 2.14 plots the maximum error between the ROMs and the full models for the f rst

twenty modes. For these modes, the standard ROM does well with most errors below 5%,

with the exception of modes f ve, f fteen, and sixteen. The error-quantif ed ROM reduces

the error for many of the larger errors in this range, particularly modes f ve, f fteen, and

sixteen where error is reduced by nearly 50%. In general it is seen that the error-quantif ed

model is not as effective in correcting for bias as it was for frequency, but still enables

forced response force prediction for the f rst twenty modes within 5% of full model results.

The remaining random error can be accounted for with the random error term.
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2.5.3 Approximation Error Root Cause and Improved Physical

Model

The results showed a modeling error which was identif ed and accounted for by the EQ

modeling approach. While an acceptable approach, it is still benef cial to increase the ac-

curacy of the approximation through an improvement in the physics of the approximation.

The need for improvements in accuracy becomes evident from the results in Chapter 4.

An approximation improvement was enabled by investigating the accuracy of the semi-

analytical calculated sensitivities. In addition, the variation in frequency sensitivities and

values across the design parameter space are investigated to show the nonlinearity of modal

response across the range and show the applicability of the linear approximation.

After a thorough investigation it was found that errors in the approximation were asso-

ciated to a non-converged f nite difference step size in the semi-analytic sensitivity calcu-

lations. The semi-analytical approach is based on approximating the change in frequency

by projecting the stiffness, 4K, and mass matrix, 4M , variations to the modal domain

using the unperturbed mode shape, φi. This approximation is accurate when the difference

between φi and 4φi is small. At very small step sizes the difference between φi and 4φi
is indeed small. A numerical f nite difference approach for modal sensitivity calculations

were less sensitive to step size. It was found, for the 1st mode, with the numerical f nite

difference approach that the variation in response with respect to changes in the geomet-

ric parameters is nearly linear. As such, use of large step sizes in the numerical approach

produced accurate results. Figure 2.15 shows the convergence plot between the numerical

and semi-analytical sensitivity calculations for the f rst bending mode. It is seen that the

numerical approach predicts the same sensitivity regardless of step size, whereas the semi-

analytical approach converges on the sensitivity at a step size of 0.00025. The standard

ROM was constructed using a step size of 0.05 and the error is sensitivity is evident. Even
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with these sensitivity errors, the standard ROM was able to predict the full FEM results

with good accuracy. With the corrected sensitivities, the results are very similar to the EQ

ROM. While the variation in response for the 1st mode was nearly linear, this was not the

case for higher modes.

The variation of frequency sensitivity with step size for the 11th mode is shown in Figure

2.18. Results from the 11th mode are selected because it will be investigated further in

Chapter 4. The f gure shows, unlike the 1st mode results of Figure 2.15 that the sensitivity

is not constant at various step sizes. This in part is due to the fact that a larger range

of geometry variation has been considered. This variation in sensitivity indicates that the

linear approximation will have increased error away from the forward differencing location.

As a f nal analysis of approximation error, Figure 2.17 shows compares the linear approx-

imation and FEM results for the 11th mode given the perturbation of only the 1stprincipal

component model. The forward differencing point was taken at a step size of 0.05 and it

is seen that between 0 and 0.05, the accuracy of the approximation is excellent. Below

0 step size and above 0.05 it is shown that the approximation underpredicts the FEM fre-

quency. This nonlinear response is responsible for the remaining errors in the 11th mode

approximation. The comparison of the approximate to FEM frequencies for the 11th mode

are shown in Figure 4.18 and the consistent underprediction of the approximation is evi-

dent. This demonstrates a need for improved approximation approaches that account for

the nonlinear variation of modal response with respect to geometric parameters.

It is concluded that the semi-analytic sensitivities accurately predict sensitivities at a re-

duced computational cost compared to a numerical approach. The numerical approach is

still clearly attractive because it is not dependent on the assumption of equality of φi and

4φi. Because of this, and the reduction in geometric parameters that reduces the computa-

tional requirements of a numerical approach, the numerical approach is used in Chapter 4.

Use of the semi-analytical approach will be more valuable when a larger number of f nite
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difference calculations would be required. This could occur when a larger number of re-

tained PCA modes are required or multipoint approximations are used. It is also concluded

that nonlinear approximations are required for improved approximation accuracy. Linear

approximations are used in Chapter 4, which will further identify the need for improved

modal approximations.

2.6 Conclusion

This effort demonstrated the impact of geometry deviations from design intent on the modal

and forced response behavior of airfoils. Signif cant variations were shown in frequency

and these variations are signif cant to mistuned rotor response. The ability to predict these

eff ciently with the developed ROMs can signif cantly improve current mistuning analysis

and design procedures. It was shown that mode shape variations were more sensitive than

frequency variations and these led to large variations in forced response. These variations

are not currently accounted for in design, but the developed ROMs begin the process to do

so. The ROMs are based on PCA reduction in geometry parameters and an eigensensitivity-

based approximation to reduced response solution times. The error between this model and

full models was quantif ed, and a linear regression model was demonstrated to quantify

which parameter was contributing to error. Knowledge of this relationship led to an im-

provement in the model accuracy.

Further analysis of the errors led to the identif cation of physics-based model errors that

were reduced through the use of numerical rather than semi-analytic sensitivity calcula-

tions. It was also identif ed that improvements to accuracy can be made in the future by

considering the nonlinear variation of the modal response. The results in Chapter 4 will

demonstrate the need for such improvements.

71



Figure 2.1: Mode Fifteen and Mode Sixteen
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Figure 2.2: Airfoil Surface Deviation (Blade 1)
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Figure 2.3: Total Variance Explained by Principal Components
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Figure 2.6: Correlation of PC Mode Parameters and Residual (Mode 16)
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Figure 2.7: Maximum Error Calculation for Airfoil Frequency
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Figure 2.8: Airfoil Modal Force Variation
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Figure 2.9: Modal Force Prediction Comparison (Mode 15)

80



−0.2 0 0.2
−0.2

0

0.2
PC Mode 1

R
es

id
ua

l

z−score
−0.1 0 0.1

−0.2

0

0.2
PC Mode 2

R
es

id
ua

l

z−score
−0.1 0 0.1

−0.2

0

0.2
PC Mode 3

R
es

id
ua

l

z−score
−0.1 0 0.1

−0.2

0

0.2
PC Mode 4

R
es

id
ua

l

z−score

−0.1 0 0.1
−0.2

0

0.2
PC Mode 5

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 6

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 7

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 8

R
es

id
ua

l

z−score

−0.05 0 0.05
−0.2

0

0.2
PC Mode 9

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 10

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 11

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 12

R
es

id
ua

l

z−score

−0.05 0 0.05
−0.2

0

0.2
PC Mode 13

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 14

R
es

id
ua

l

z−score
−0.05 0 0.05

−0.2

0

0.2
PC Mode 15

R
es

id
ua

l

z−score

Figure 2.10: Maximum Error Calculation for Airfoil Modal Force (Mode 15)
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Figure 2.11: Maximum Error Calculation for Airfoil Modal Force
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Figure 2.12: Airfoil Forced Stress Variation
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Figure 2.13: Forced Stress Prediction Comparison (Mode 15)
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Figure 2.14: Maximum Error Calculation for Airfoil Forced Stress
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Figure 2.15: Sensitivity Convergence Plot
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Figure 2.16: Step Size Sensitivity Variation
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Figure 2.17: Frequency Comparison for Single PCA Mode Variation
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Figure 2.18: First PCA Mode Frequency Perturbation
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Figure 2.19: Modal Stiffness Approximation Results - Mode 11
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3 Probabilistic Gradient Kriging to

Effi ciently Predict Failure

Probability Confidence Intervals

Abstract

Probabilistic methods predict response variations caused by the randomness of a sys-

tem’s def ning parameters. While it is generally assumed that the parameter statistics are

known absolutely, they are usually an estimate taken from a small sample. The inherent

variability of this process creates an uncertainty in the sample statistics that is quantif ed

with a sampling distribution and statistical conf dence intervals. Because probabilistic fail-

ure calculations are based on these uncertain statistics, the predicted failure probability

itself becomes uncertain. Calculating the failure probability distribution requires a com-

putationally expensive nested inner- and outer-loop reliability calculation. This work de-

velops a failure probability approximation method for the inner-loop to eff ciently quantify

the effect of statistical parameter uncertainty on failure probability distributions and conf -

dence bounds. The new failure probability approximation approach, Probabilistic Gradient

Kriging, is based on an augmented Kriging approach that uses both the function values

and eff ciently calculated probabilistic sensitivities. Fatigue crack growth and rotor burst
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demonstration problems are used to compare the polynomial response surface method,

Kriging, and the new Probabilistic Gradient Kriging method. Results show that the new

method can f t surfaces extremely well, reduce approximation error by an order of magni-

tude, and enable eff cient statistical parameter uncertainty propagation. It is also shown that

the uncertainty in statistical estimates from small samples can cause dramatic variations in

predicted failure probability and should be accounted for to ensure system reliability.

3.1 Introduction

Probabilistic analysis methods predict reliability from a probability-based def nition of a

system’s def ning parameters. These parameters are described as probability density func-

tions (PDFs) def ned by distribution type and statistical parameters. It is typically assumed

that the statistical parameters are known without uncertainty and that the population statis-

tics have been ideally quantif ed. In reality, because of the limited data sets used to quantify

statistical parameters, there is quantif able uncertainty between sample and population sta-

tistics. This uncertainty can be modeled using a frequentist or Bayesian approach that

leads to probability or likelihood def nitions of the statistical parameters. The impact of

this additional level of uncertainty can be calculated using a nested reliability calculation

that requires outer-loop samples from the statistical uncertainty and inner-loop samples

from conditionally def ned PDFs of the system’s def ning parameters. Over many sam-

ples, the failure probability distribution is predicted from which conf dence bounds can be

quantif ed. The nested Monte Carlo Simulation (MCS) can be computationally expensive,

since each outer-loop sample is itself a MCS. Clearly there is a need for a more eff cient

approach.

Early works in propagating statistical uncertainty were based on reliability methods us-

ing the safety index. Der Kiureghian and Liu demonstrated the prediction of mean, median,
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maximum likelihood estimates, and bounds of a safety index from uncertain statistical pa-

rameters [70]. Torng and Thacker calculated safety index bounds at specif ed conf dence

intervals using an iterative approach and, in a later effort, approximated the variation of the

safety index using linear Taylor series expansion [72, 73]. The works both showed signif-

icant sensitivity of the safety index to uncertainty in statistical parameters. Mehta et. al.

assessed these approaches in addition to a f rst-order approach developed byWirshing [71],

full nested MCS, and a regression approach where the response function is approximated

with a response surface [74]. They concluded the full nested outer- and inner-loop approach

to be the most accurate but had the obvious computational costs, and that the approximate

methods were eff cient but had potential accuracy issues. Venkataraman et. al. developed

several approaches to calculate conf dence bounds for the safety index that included nested

MCS with a safety index conversion, local approximation of the safety index using MCS

and approximate sensitivities, a linear response surface approximation of MCS sampling

points, and a nested two-loop First Order Reliability Method (FORM) [75]. Each method

was shown to predict a result within a few percentage points of each other.

These prior works based their reliability calculations on safety index calculations. While

acceptable for many problems where a Most Probable Point (MPP) can be located and the

limit state approximated with a f rst or second order surface, the use of MCS of failure

probability can be more generally applied. The limitation of this approach is the cost re-

quired for MCS of the inner-loop of the nested calculation. Picheny et. al. developed a

method for predicting a MCS predicted conservative estimate of failure probability based

on the uncertainty in sample statistics using a single MCS simulation [78]. Their approach

focused on providing a conservative estimate of the input statistics and using a single MCS

reliability calculation to predict the conservative estimate. While valuable, the distribution

is not predicted and the conservative estimate may not accurately ref ect the true conf dence

interval. Cruse and Brown developed an eff cient approach to propagate Bayesian statistical
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uncertainty by approximating the inner-loop failure probability calculation using a failure

probability response surface [79]. This surface was a function of the statistical parameters

and developed using a Design of Experiments (DOE) training set of MCS predicted failure

probabilities. While the quadratic response surface used was effective in the example prob-

lem, complex responses may require advanced approximation tools. Further, since each

surface training point requires a full MCS, accurate and eff cient regression techniques for

a given set of training points are desired.

This effort develops a new failure probability approximation approach that accurately

and eff ciently computes probabilistic conf dence intervals from uncertain statistical para-

meters. The newmethod is called Probabilistic Gradient Kriging, or the PGKmethod. PGK

is an approximate surface approach that f ts both function values and augmenting model in-

formation. In this work, the function values are failure probabilities and the augmenting

data are failure probability sensitivities. Eff ciency is enabled by using sampling-based

probabilistic sensitivity calculations that calculate both failure probability and failure prob-

ability sensitivity to statistical parameters using a single MCS sample set. The new method

is compared to response surface and Kriging approximations of the failure probability sur-

face. It is shown that the PGK approach is signif cantly more accurate than either of these

two approximations, with the sum squared error reduced by at least an order of magnitude.

The failure probability approximations are then used to calculate failure probability conf -

dence intervals based on the uncertain statistical parameters. The method is demonstrated

on both a fatigue crack growth model and rotors burst margin problem. It is shown that

the uncertainty in statistical estimates from small samples can cause dramatic variations in

predicted failure probability and that sample statistic uncertainty should be accounted for

to ensure system reliability.
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3.2 Theory

The f rst subsection describes probabilistic analysis with statistical parameter uncertainty

and the method of describing the statistical parameter distribution. The second subsection

reviews Kriging approximation which is the basis of the PGKmethod. The third subsection

describes the PGK method, how gradients are included in the Kriging model, and how

probabilistic gradients are calculated from a single MCS sample.

3.2.1 Probabilistic Analysis with Statistical Parameter

Uncertainty

Conventional probabilistic analysis is used to predict failure probability, pf , represented as

pf =

∫

· · ·
∫

g(x)<z

px(x)dx (3.1)

where px is a joint PDF of random parameters, x, g(x) is the limit state function, and z is

a failure value. The joint PDF is def ned by, and therefore conditional upon, its statistical

parameters. The uncertainty in statistical parameters due to small sample sizes can be mod-

eled by considering this conditional statement and leads to a failure probability conditional

on the statistical moments, φ, of the random parameters

pf |φ =

∫

· · ·
∫

g(x)<z

px|φ(x|φ)dx (3.2)

where φ is a vector of statistical parameters def ning the joint PDF and px|φ(x|φ) is the

conditional distribution of x with with respect to its statistical parameters. In this work, the

uncertainty of φ is considered and modeled as a random variable, pφ (φ), and its effect can

be propagated by integrating Eq. 3.2 across the domain of φ,
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E [pf |φ] =

∫

· · ·
∫







∫

· · ·
∫

g(x)<z

px|φ(x|φ)dx






pφ(φ)dφ (3.3)

where the inner integral can be approximated with a MCS failure probability calculation

at a given φ and the outer integral can be approximated with sampling from pφ(φ). The

result is an expected value of failure probability. The distribution of failure probability

can be constructed by numerically sampling random values of pφ (φ) and solving the inner

integral for failure probability. Conf dence intervals and other summary statistc can be

determined from this distribution.

A description of pφ(φ) is required to complete eq. 3.3. There are several approaches

for this including Bayesian and frequentist. For this work a frequentist approach is used

because its mathematically simple, more commonly used in the engineering community,

and amenable to the demonstration problem distributions. The developed PGK method

is equally applicable to either method. For the frequentist approach, pφ(φ) is calculated

from statistical inferencing methods used to predict conf dence intervals. For normally

distributed data, the mean is normally distributed

pµ (µ) ≈ N

(

µx,
σx√
n

)

where µx is the sample mean, σx is the sample standard deviation, and n the number of

samples. For small sample sizes, the distribution follows a t-distribution

µ− µx
σx/

√
n
≈ tn−1

where n − 1 are the number of degrees of freedom. This same result is achieved with a

Bayesian approach where a non-informative prior is used with the likelihood function of the

data. For standard deviation, the distribution from small sample sizes follows a chi-squared
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distribution

(n− 1)σ2
x

χ2
n−1

(3.4)

where χ2
n−1 is the chi-squared distribution for n−1degrees of freedom. Conf dence bounds

on lognormally distributed data can be determined by taking the exponential of the results

the above sampling distribution equations. There are many frequentist approaches for pre-

dicting conf dence intervals for various distribution typex̄ is the sample mean, σ the popu-

lation standard deviation, s the sample standard deviation, zα the standard normal variable,

tα the t-distribution, and s and only the simplest is used here for demonstration. The PGK

method is suitable for all forms of statistical parameter uncertainty quantif cation. The

primary function of PGK is to approximate failure probability variation with respect to

statistical parameters. The following section begins the explanation of the approach.

3.2.2 Kriging Approximation

Conventional Response Surface (RS) methods f t polynomials to function values at selected

training sites. Typically training site locations are selected through a design of experiments

(DOE) approach. The general form of the RS is

y (x) =

nk
∑

j=1

βjfj (x) + ε(x) (3.5)

where x are the approximation locations, βj are regression coeff cients, fj (x) are regres-

sion functions, nk are the number of regression functions, and ε a normally distributed,

zero mean, constant standard deviation error parameter. The error term accounts for the

discrepancy between the approximation and the training site function values and is gener-

ally not accounted for in further analysis other than surface f t metrics such as R2. The R2
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metric, the coeff cient of determination, is a relative quantity that measures the proportion

of data set variability modeled by the approximation. RS methods are particularly useful

when f tting replicated experimental data because the surface approximates the data in a

least squares sense. In the case of f tting output from computer simulations, it is generally

true that each training site has a single function value and therefore an interpolating surface

can be more accurate. Sacks et al. proposed a method to more effectively model determin-

istic computer responses frequently referred to as the Design and Analysis of Computer

Experiments (DACE) [54]. This method itself is at its foundation a Kriging approach f rst

introduced by Krige [91].

Kriging modif es the traditional RS technique by including a stochastic process model

of the surface error:

y (x) =

nk
∑

j=1

βjfj (x) + Z (x) (3.6)

where Z (x) is a Gaussian stochastic function with a zero mean and σ2
z variance. By in-

cluding the stochastic error function, the surface interpolates through training points rather

than approximates as in RS methods. The Gaussian stochastic function is calculated as

Z (x) = rTR (y − fβ) (3.7)

where R and r are correlation functions, y are training point function values, and (y − fβ)

the error between training site function values and the polynomial approximation. For the

developed PGK method, it is important to select the product power exponential correlation

function:

R
(

xi, xj
)

=

nd
∏

k=1

exp
{

−θk
∣

∣xik − xjk
∣

∣

}

(3.8)
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whereR is nt×nt, nt the number of training sites, nd the dimension of the design space, θk
a vector of correlation parameter, and xik and x

j
k are training site locations. Its selection is

important to PGK because its analytical derivative can be easily determined which will be

shown in the following subsection. Several prior efforts using gradient Kriging have used

this same correlation function.

Vector rT is the 1 × nt correlation between the training sites and a test site location:

rT (x) =
[

R
(

x0, x1
)

, R
(

x0, x2
)

, . . . , R
(

x0, xnt
)]

(3.9)

where test site, x0, is an approximate solution location. The regression coeff cients, βj , are

calculated as

β̂j =
(

fTR−1f
)−1

fTR−1y (3.10)

where β̂j is the maximum likelihood estimate of the regression coeff cients. An appropriate

θ value is computed, as shown in Santner [92], by maximizing its negative log-likelihood

function, L, over the sample points using the functions

L (σ,R, θ) =
− [nln (σ2) + ln |R|]

2
(3.11)

σ2
z(θ) = (y − fβ)T R−1 (y − fβ) (3.12)

where σz is the data variance. The maximization of L can require a complex multi-

dimensional search process. This can be particularly challenging when the number of

training sites becomes large because the inversion of R becomes expensive. With the PGK

approach in the following subsection, this cost increases substantially as the size of R in-

creases with number of augmenting models.
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As formulated, the Kriging approximation is based only on training site function val-

ues. Using additional model information at the training sites, such as gradients, is a likely

approach to improve approximation accuracy for a given number of training sites. The

following subsection describes the use of gradients in the Kriging model and how these

gradients are calculated at training sites with no additional computational cost.

3.2.3 Probabilistic Gradient Kriging

In the original work of Sacks, it was posed that multiple models could provide training site

information for Kriging. A specif c case that has clear advantages would be to use func-

tion value and gradient models at training sites. Prior researchers have demonstrated this

gradient augmented Kriging on engineering applications. Chung and Alonso applied the

approach to a 2-D CFD optimization problem and showed signif cant accuracy improve-

ments [93]. Liu and Batill investigated augmenting Kriging with gradients and compared

the approach to a Kriging approximation using additional function values generated from

training site sensitivities and linear Taylor series expansion [94]. They found the augmented

Kriging approach more accurate and did not have the additional challenges with selecting

an appropriate step size to create additional function values. These works provide moti-

vation to apply the gradient augmented Kriging technique to the approximation of failure

probability surfaces.

Gradient Kriging augments the function values and regression functions with gradient in-

formation. In this case, the augmented training point input to the model, ya, and augmented

regression functions, fa, are

ya =
[

y0 (x) , . . . , ynp
(x)
]

(3.13)

where y0 (x) are the function values, yp (x) are the partial derivative values for the pth
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partial derivative models, 1 ≤ p ≤ np, where p are the number of partial derivatives.

Each component of yp (x) has partial derivatives with respect to each component of xd,

1 ≤ d ≤ nd, where nd is the dimension of x. When only f rst partial derivatives are

included, as is done in the demonstration problems, ya becomes

ya =

[

y (x) ,
∂y (x)

∂x1
,
∂y (x)

∂x2
, . . . ,

∂y (x)

∂xnd

]

. (3.14)

Similarly, the function and augmenting function values are

fa =
[

f0 (x) , . . . , fnp
(x)
]

(3.15)

and for only f rst partial derivative augmentation

fa =

[

f (x) ,
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xnp

]

(3.16)

The vector of regression coeff cients are then

β̂a =
(

fTa R
−1
a fa

)−1
fTa R

−1
a ya (3.17)

where Ra is the augmented correlation matrix that includes covariances between each

derivative and function model.

Cov
{

y0

(

xi
)

, yp
(

xj
)}

= σ2
z

∂R (xi, xj)

∂xp
(3.18)

Cov
{

yq
(

xi
)

, yp
(

xj
)}

= σ2
z

∂2R (xi, xj)

∂xiq∂x
j
p

(3.19)

where q also references the partial derivativemodels, 1 ≤ q ≤ np, and xi and xj are training

site values, 1 ≤ i ≤ nd, 1 ≤ j ≤ nd. Rawill be an nm × nm matrix of submatrices where
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nm is the number of models, 1 + np. Each submatrix is an nt × nt matrix of correlations.

Eqs. For a two-dimensional surface using a function model and its two partial derivatives,

Ra is

Ra =













R (i, j) −σz ∂R(i,j)
∂x1

−σz ∂R(i,j)
∂x2

−σz ∂R(i,j)
∂x1

σz
∂2R(i,j)
∂x1∂x1

σz
∂2R(i,j)
∂x1∂x2

−σz ∂R(i,j)
∂x2

σz
∂2R(i,j)
∂x1∂x2

σz
∂
2
R(i,j)

∂x2∂x2













(3.20)

where σz is the constant variance term. When the number of models and training points

becomes large, computation of the inverse of Ra can be computationally costly. For the

demonstration problems, the largest matrix was 2500 × 2500which did not contribute sig-

nif cantly to computational time, but it is a potential limitation for problems with high

numbers of training sites. The partial derivative terms require the derivative of the correla-

tion function. As stated, the product power exponential function, Eq. 3.8, is used because

it is easily differentiated:

∂R (i, j)

∂xp
= −2θp

(

xip − xjp
)

σ2
zR (i, j) (3.21)

∂2R (i, j)

∂xp∂xp
=
(

−2θp + 4θ2
p

(

xip − xjp
)2
)

σ2
zR (i, j) (3.22)

∂2R (i, j)

∂xq∂xp
= 4θqθp

(

xiq − xjq
) (

xip − xjp
)

σ2
zR (i, j) . (3.23)

The regression function matrix becomes

f =













F0 · · · 0

... . . .

0 Fnp













(3.24)
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F0 =













1 x1
1 · · ·

...
...

...

1 x1
nt

· · ·

xnk

1

...

xnk
nt













, F1 =













0 1 0

...
...

...

0 1 0

· · ·
...

· · ·

0

...

0













, Fnp
=













0 · · · 0

...
...

...

0 · · · 0

1

...

1













(3.25)

where each regression function matrix is nt × nk and for illustration constant and linear

polynomials regression functions included.

The maximum likelihood of θ is calculated using Ra. The correlation vector for test

sites, ra, requires the correlation between test and training sites for each of the models:

rTa (x) =

[

r (i, j) ,
∂r (i, j)

∂xq
,
∂r (i, j)

∂xp

]

(3.26)

with derivative terms calculated with eq. 3.21. Augmenting the surface model with gra-

dient information should lead to accuracy improvements when approximating the failure

probability surface but, without further method development, the computational cost of the

sensitivity calculations could limit method effectiveness. To be truly attractive, the PGK

method should not incur additional function value computation costs such as those required

for numerical f nite difference calculations.

Calculating the required probabilistic sensitivities with a numerical f nite difference ap-

proach would require 1 + nd MCS predictions at each training site. This would add sig-

nif cant cost to PGK and instead an approximate approach is used based on a single MCS

sample at each training site. Karamchandani developed an approach to calculate failure

probability sensitivities to statistical parameters using a single MCS sample set [76]. The

approach is based on the numerical simulation of failure probability which derives from

the analytical failure calculation:
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pf =

∞
∫

−∞

I (x) fx (x) dx (3.27)

where I (x) is an indicator variable with a 0 value for a safe condition and 1 for a failure

state. Through MCS, the integral is approximated as

pf =
1

N

N
∑

j=1

I (xj) (3.28)

where N is the number of samples. A perturbation of pf from a change in a statistical

parameter can be approximated using the ratio of the density functions for the sample

points in the failure region,

pf (φi + ∆φi) ≈
1

N

n
∑

j=1

I(xj)
f(xj | φi + ∆φi)

f(xj | φi)
(3.29)

where ∆φi is a small distance away from a nominal statistic used in the MCS. This per-

turbed pf , which has been calculated without a MCS simulation, can then be used with the

nominal pf in a f nite difference sensitivity calculation

∂pf
∂φi

≈ pf (φi + ∆φi) − pf(φi)

∆φi
(3.30)

to predict approximate sensitivities. This sensitivity method is subject to bias and variance

errors. The variance of the sensitivity was derived by Karamchandanhi et al.,

V ar

(

∂pf
∂φi

)

=
1

N2

N
∑

j=1

I (xj)

[

f (xj | φi + ∆φi) − f(xj | φi)
f(xj | φi)4φi

]2

− 1

N

(

∂pf
∂θi

)2

This approach assumes that the Monte Carlo samples from f (xj | φi + ∆φi) are the same

as those from f(xj | φi). Failure to satisfy this assumption will lead to bias errors. The
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bias is reduced with small ∆φi but variance increases.

Analytical approaches for failure probability sensitivities have been developed that could

reduce this effect [95] but are not used here as the numerical approach is more easily imple-

mented and the sensitivity variance does not signif cantly effect the PGK accuracy. Sub-

stitution of (3.30) into (3.14) leads to the eff ciency of PGK in addition to its improved

accuracy.

There are several issues to be considered with the application of PGK. First, the MCS

results at each training site are not unique computer results as is normally the case with

Kriging models. This uncertainty is associated with the sampling uncertainty of MCS and

can be reduced, as it is in the demonstration problems, with an appropriate sample size. The

uncertainty from the MCS is at least an order of magnitude smaller than those shown from

the uncertainty in sample statistics. Second, the failure probability approximation has more

variables than a typical response approximation. Each response approximation variable

has multiple statistics associated with it and therefore the failure probability approximation

will be a s-dimensional surface where s is the total number of statistical parameters. Third,

there is error between the PGK approximation and the true failure surface. This error can

be reduced with additional training data and the distribution of the θ parameter can be used

to establish a conf dence on the surface f t. Finally, the method does require multiple MCS

which can be costly. A regression model or other reduced-order model of the limit state

function is therefore still considered necessary for practical application.

In summary, this work proposes to calculate probabilistic conf dence intervals from un-

certain statistical parameters. The uncertainty in statistics is quantif ed using a frequentist

statistical inferencing approach. The variation in failure probability as a function of the

statistical parameters is predicted using an Kriging approach augmented with gradient in-

formation. These gradients are eff ciently calculated using a single MCS sample at each

training point. The PGK approach is then used to approximate the inner-loop of the nested
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reliability problem and enables eff cient prediction of failure probability conf dence inter-

vals. This approach is demonstrated in the following section.

3.3 Demonstration Problems

The developed methodology will be demonstrated on a fatigue crack growth and a disk

burst margin model.

3.3.1 Fatigue Crack Growth

The response function for the crack growth example is

Nf =

(

a
1−m/2
f − a

1−m/2
i

)

c (1.12154σ)m π (1 −m/2)
(3.31)

with statistical values def ned in Table 3.1. The number of samples in Table 2 was chosen

so that the each contributed signif cantly to the variation in failure probability. For example,

if 15 samples were used for the Paris constant, it’s effect on failure probability variation

would be negligible. Using the population statistics from the table and 2 million MCS

samples the predicted failure probability is 0.0022. For initial demonstration purposes that

facilitate a surface plot, population statistics are used for all but the cyclic load variable. In

the case of one random variable, there are two predictors in the approximate model, one

for each statistic, i.e. the mean and standard deviation. A small sample of ten data points

is drawn from the population and used to estimate the cyclic load statistics and conf dence

intervals. The sample distribution from a typical ten sample data set is shown in Figure

3.1. These f gures show the wide range in possible statistical values from the ten sample

points. The 95% upper bound on the standard deviation is 21.53, more than twice the actual

population standard deviation, while the mean upper bound is 107.30.
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Approximating variation in failure probability as a function of statistical uncertainty re-

quires selection of training sites. For demonstration, a full factorial two-level design is

used that selects points at the lower 0.025% and upper 0.975% values of the each statistic’s

conf dence interval. These four corner points of the design space do not allow an indication

of surface curvature from function values alone. This is done with the intention of demon-

strating the effectiveness of the developed PGK model when compared to the traditional

RS approach.

To construct the RS approximation of failure probabilities, a conventional approach

would be to conduct a step-wise analysis of the signif cant modeling variables and track

the adjusted R2 value. In the four training site example, there are too few values to require

this, and instead a full linear model with interaction terms is used that perfectly interpolates

the training site data. The applied RS model is

pf = bo + b1µ∆σ + b2σ∆σ + b12µ∆σσ∆σ (3.32)

where {bo, b1, b2, b12} are the regression coeff cients and µ∆σ and σ∆σ are the mean and

standard deviation of the cyclic load random parameter. While in conventional RS usage,

this model is over-f tting the data, this is actually advantageous in this example because

there is insignif cant variation in the training site data and the RS interpolates the data as

does PGK. In a case where the number of Monte Carlo simulations was small and the

uncertainty grew with respect to the sample statistic uncertainty, the RS approach would

have the benef t of creating a best f t of the variation at all the training sites.

The PGK model is based on the same four training sites and uses only the constant re-

gression term, bo, and correlation data of training site error to model the function values.

While the model could have used the same model shown in Eq. 3.32, which would reduce

the error at the training sites, it is not done so in this example to demonstrate the PGK abil-
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ity to effectively model the failure probability variation with few modeling assumptions.

Instead, the approach allows the data to determine the form of the approximation. The

approach does require the selection of a form of the correlation function and for this and

all examples, the product power exponential function is used because of the ease in taking

its analytical derivative. Other forms of correlation function, such as the Gaussian, are not

signif cantly different than the product power exponential and it has not been shown that

certain functions are superior to others. For the demonstration problems, the maximum

likelihood estimate of the correlation parameter, θ, is determined through a simple random

walk search of parameter values. The random walk begins with an initial condition of ones

for θ. Each vector entry was then randomly perturbed by a uniformly distributed value

between -1 and 1. If the new random values for θ increase the negative log-likelihood func-

tion, Eq. 14, then it is retained as the initial condition for continued random perturbations.

This process was continued until convergence.

Failure probability approximations are validated on a 10 x 10 grid of equally spaced test

points that span the statistical conf dence intervals. Results for the cyclic load variable are

shown as a contour plot of the failure surface in Figure 3.2. The surface is represented

by f ve cross sections equally distributed across the standard deviation dimension. The

failure probability increases nonlinearly as both mean and standard deviation increase to

a maximum of 0.0412 with a minimum of 0.0001. It is instructive to recall that the fail-

ure probability based on the population statistics is 0.0022, showing the maximum failure

probability is more than 1500% greater when considering the bounds of the statistical con-

f dence intervals. The linear RS approximation interpolates the corner training points and

matches the trend of the failure surface but clearly does not match the surface curvature.

On the other hand, the PGK approach utilizes the gradient information with excellent re-

sults, following the surface across the conf dence interval region. The R2 metric is used to

compare the f t of the approximation to the test data. It is calculated,
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R2 = 1 − SSerr
SStot

(3.33)

where SSerr is the sum of squared error,

SSerr =

nv
∑

i=1

(yi − fi)
2 (3.34)

and SStotis the total sum of squares

SSerr =

nv
∑

i=1

(yi − ȳ)2 (3.35)

where nv is the number of test sites, yiare the function values at the test sites, and fiare

the approximation values at the test sites. The R2 value for the RS is 0.7001 while the

PGK model is 0.9969. The SSerr is also compared with the RS model (0.0024) and PGK

(1.67E-5.) Both measures show a substantial improvement with the PGK method.

The PGK approach is also compared to a standard Kriging approach in Figure 3.3. The

results for the Kriging approximation are poor, even when compared to the linear RS,

because of the sparsity and location of training data. The R2 value of the Kriging model

is 0.3754, and the SSerr is 0.0036, which are both signif cantly worse than the RS model.

Inquiring into the construction of the Kriging model shows why the f t is poor. Based on the

assumed correlation function, and the optimized correlation parameters, θ, the center region

of the approximation looses all relationship to the training site regression error. Therefore,

the approximation is left with only the regression term of the Kriging model, which is

the constant term, bo, in this model. This leaves a f at plane in the interior of the design

space that is the average of all four data point values. The Kriging approximation could

be improved by including additional regression terms of the RS model and would likely

produce a superior result. Also, the selection of training points at the corners of the the
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design space is an ineff cient approach for Kriging since its accuracy is highest in regions

surrounding the training points. By using corner points, a majority of the region around the

training point is not considered. This same ineff ciency is faced by the PGK method yet it

still produces accurate results.

The remaining three random variables are all individually analyzed to identify any chal-

lenges prior to continuing to the full model approximation. The results are summarized in

Tables 3.2 and 3.3. Again, in all cases PGK shows a dramatic improvement in the f t. Vari-

ation in the statistics of initial crack size, ai, showed the most signif cant impact on failure

probability with a maximum of 0.0504. The surface is the most linear of the variables in-

vestigated, seen by the 0.9221R2 for the RS method which is still inferior to the 0.9948R2

of PGK. The Paris constant had the smallest impact on failure probability variation, which

was still over a 250% increase from nominal. For all parameters, PGK reduced the SSerr

by at least an order of magnitude and maintained an R2 above 0.975 when approximating

failure probability as a function of one parameter.

While these results are encouraging and give a visual representation of the approximate

surface, the actual application of method is meant for the multidimensional approximation.

For the demonstration problem with four random parameters, an 8-parameter hypersurface

approximation is required. A two-level full factorial design would required 256 training

sites which is more than desired considering the ineff ciency of this approach for Kriging

and PGK. Instead an Latin hypercube sample (LHS) design is used that effectively distrib-

utes training points throughout the design space. For the demonstration, 25 training points

are used. The approximation was tested at 500 full MCS test sites also selected using LHS.

A stepwise regression was implemented to retain the signif cant linear, interaction, and

quadratic terms of a a response surface approximation. The stepwise regression is a numer-

ical process that determines retained predictive variables based on a sequence of statistical

tests. A forward selection approach was applied that begins with no predictors in the model
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and successively adds variables and retains them if meeting specif ed signif cance levels.

For this, a signif cance level of 0.05 was used to include the predictor. When predictors are

added, previously included parameters change in signif cance and they are removed from

the model when the signif cance increases beyond 0.1. The result of this regression retained

12 predictors

pf = bo + b1µ∆σ + b2σ∆σ + b3µai
+ b4σai

+ b5µKIC
+ b14µ∆σσai

+ b24σ∆σσai
+ . . .

. . .+ b31µai
µ∆σ + b38µai

σKIC
+ b22σ

2
4σ + b55µ

2
c (3.36)

and is composed of linear, interaction, and quadratic terms. The R2 value for the f t of this

surface to the 25 training points is 0.9859 and its adjusted R2 is 0.973994. The adjusted

R2 modif es the R2 to account for the number of retained predictor variables in the model,

debiting the value for each retained predictor. The adjusted R2 is

1 −
(

1 − R2
) nt − 1

nt − np − 1
(3.37)

where nt is the number of training points and np is the number of predictor variables. The

purpose of the adjustedR2 value is to prevent over-f tting the training points since retention

of more predictor variable always increases R2.

Results of the surface f tting are included in Table 3.3 and show a maximum failure

probability of 0.1214, an almost 4500% increase from the true population value. Figure

3.4 compares the PGK and RS predicted values versus the 500 full MCS results. The

PGK approximation of the failure surface maintained excellent f t of the data with an R2

of 0.9831, while linear RS managed only 0.7306. Similarly, Figure 3.5 shows the Kriging
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model compared to the RS model. The Kriging model in this case achieved an R2 of

0.8254, which shows that in the multidimensional case with LHS sampling that Kriging

was a better approximation than the RS. These results show that the PGK method can be

effectively used to eff ciently approximate failure probability uncertainty caused by small

sampling uncertainty for the fatigue crack growth problem.

With the PGK approximation available as the inner-loop of the nested reliability calcu-

lation, the outer-loop sampling of the statistical uncertainty can be eff ciently conducted.

The histogram of 100,000 outer-loop samples is shown in Figure 3.6. Without the failure

probability approximation, and using the 2 million sample inner-loop MCS, this prediction

would require a total of 200 billion function calls. The 95% upper bound of this distribution

is 0.0428, nearly a 1600% increase in the population failure probability. These results show

the signif cance of accounting for the sample statistic uncertainty to ensure robust designs.

3.3.2 Burst Margin of a Disk

Disk burst margins ensure rotating disk integrity from potential overstress conditions. The

margin is calculated using

Mb =

√

√

√

√

(MUF )(UTS)
ρω2(R3−R3

o)
3g(R−Ro)

(3.38)

where the parameters and population statistics are def ned in Table 3.4. Using these statis-

tics, a limitMb value of 0.39, and 2 million MCS samples, the predicted failure probability

is 0.0168. Small samples were drawn from each of the Table 3.4 variables with the excep-

tion of ρ, the material density. The material density’s uniform distribution does not allow

for conventional conf dence interval calculations, though they can be calculated with other

methods. The small sample statistics are shown in Table 3.5.

RS, Kriging, and PGK methods are used to approximate the variation in failure prob-
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ability caused by the statistical uncertainty. Twenty-f ve trainings points were randomly

selected in the design space using LHS. The RS method used constant, linear, and the 14

most signif cant interaction terms while the Kriging and PGK again used only a constant

regression term. Five hundred full MCS test points were used for the comparison between

the approximations. Figure 3.7 shows the comparison of PGK versus RS. The RS method

shows signif cant error and is clearly unusable while the PGK approximation performed

well with a R2 value of 0.92. Figure 3.8 compares PGK and Kriging and though Kriging is

superior to RS, it still shows considerable error with an R2value of 0.28.

Using the PGK approximation of failure probability, the sample statistics in Table 3.5,

and a 100,000 MCS samples, the 95% upper bound on failure probability is 0.3731, a

2250% increase over the true population failure probability. Again, it is shown that statisti-

cal parameter uncertainty ca play a dramatic role in the computation of failure probability

computation.

3.4 Conclusion

A method has been proposed to eff ciently approximate the variation in predicted failure

probabilities in the presence of random parameter statistical uncertainty. This method is

used to approximated the inner-loop of a nested reliability calculation. The proposed PGK

method is based on a Kriging model augmented with probabilistic sensitivity informa-

tion. Eff ciency of the approach is maintained through the use of numerical sensitivities

that do not require multiple Monte Carlo simulations at each training site. Two demon-

stration problems were provided to show the accuracy of the PGK method. The fatigue

crack growth example achieved R2 values above 0.97 and reduced error compared to a

conventional RS by at least an order of magnitude. The disk burst margin showed similar

accuracy improvements. Both examples demonstrated the signif cance of sampling uncer-
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tainty on predicted failure probabilities and show that sample statistic uncertainty should

be accounted for to ensure system reliability.
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Nf , cycles to failure computed
ai, initial crack size LN (0.1, 0.005)

af , f nal crack size 1
π

(

KIC

1.12154σ

)2

4σ,cyclic load LN (100, 10)
c, Paris constant LN (1.2E − 10, 1.2E − 11)

KIC , fracture toughness N (60, 6)
m, Paris law exponent 3

Table 3.1: Fatigue Crack Growth Parameters

ns x̄0.025 x̄ x̄0.975 s0.025 s s0.975

4σ, cyclic load 10 90.28 97.95 107.304 6.8534 10.75 21.53
ai, initial crack size 15 0.0072 0.0099 0.0156 0.0027 0.0053 0.0142
c, Paris constant 4 9.46E-11 1.10E-10 1.36E-10 2.99E-12 6.70E-12 5.10E-11

KIC , fracture toughness 10 55.34 59.49 63.54 3.99 5.807 10.46

Table 3.2: Fatigue Crack Growth Statistics

R2
RS R2

PGK SSERS SSEPGK pf max
4σ,cyclic load 0.7001 0.9969 2.44E-3 1.67E-4 0.0412

ai, initial crack size 0.9221 0.9948 6.06E-4 7.13E-5 0.0504
c, Paris constant 0.7476 0.9771 3.91E-5 2.62E-6 0.0072

KIC , fracture toughness 0.7602 0.9765 9.00E-4 1.00E-4 0.0104
Hypersurface 0.6794 0.9831 2.23E-3 1.58E-4 0.1214

Table 3.3: Fatigue Crack Growth Approximation Metrics
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UTS, ultimate tensile strength N(220000, 5000)
ω, RPM N (21000, 1000)

R, outer radius N(24, 0.5)
Ro,inner radius N (8, .3)

MUF , material utilization factor N (0.925, 0.0722)
ρ, density U (0.28, .30)

Table 3.4: Burst Margin Parameters

ns x̄0.025 x̄ x̄0.975 s0.025 s s0.975

UTS, ultimate tensile strength 15 214290 217610 220940 4392 5991 9.46
ω, RPM 15 20427 21011 21595 772 1055 1664

R, outer radius 15 23.68 23.95 24.21 .3490 .4767 .7517
Ro, inner radius 15 7.79 7.97 8.15 0.23 0.32 0.50

MUF , material utilization factor 15 0.87 0.92 0.97 .071 .097 0.15

Table 3.5: Burst Margin Statistics
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Figure 3.7: Burst Margin: PGK and RS Predicted vs. MCS Actual
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4 Application of Component Mode

Synthesis Methods for Modeling

Geometric Mistuning in Integrally

Bladed Rotors

Abstract

Reduced-order methods have been developed that rapidly predict mistuned rotor re-

sponse by approximating mistuning with a nominal-mode basis and airfoil modal stiffness

perturbation. Nominal-mode approximation assumes that airfoil geometric perturbations

alter modal stiffness without affecting mode shape and that the mistuned response can be

predicted by a summation of nominal modes. This work investigates the accuracy of that

approximation and develops several Component Mode Synthesis based reduced-order mis-

tuning models that explicitly account for geometric deviations using both nominal and non-

nominal mode shape approximation approaches. The f rst represents the prevailing industry

method and uses nominal-mode substructure reduction with airfoil substructuremodal stiff-

nesses perturbed using geometrically-perturbed cantilevered airfoil f nite element models.

This approach demonstrates effective qualitative predictions that identify relative mistun-
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ing amplif cation, but when compared to analytical results from a geometrically-perturbed

integrally bladed rotor model, shows signif cant (∼20%) errors in maximum predicted mis-

tuned response. For blade-to-blade response prediction at specif c frequencies, dramatic

(>100%) errors are demonstrated. The second approach uses nominal-mode substructure

reduction and mistuned airfoil modal stiffness perturbations from a reduced-order modal

method. The approximate airfoil model reduces computational time by 50%while enabling

qualitative mistuning prediction. The third method uses nominal-mode substructure reduc-

tion, mistuned modal stiffnesses from geometrically-perturbed airfoil f nite element mod-

els, and expands results with a non-nominal Craig-Bampton matrix for each airfoil. Though

improvements in quantitative prediction of maximum response frequency and response

amplitudes are found for all modes, the method was inconsistent. The fourth approach

uses non-nominal mode substructure reduction and expansion using non-nominal Craig-

Bampton matrices generated from geometrically-perturbed f nite element models. This

approach demonstrates excellent prediction of peak mistuning amplif cation and blade-to-

blade response with prediction errors below 1%. A f fth approach uses reduced-order modal

methods to approximate the non-nominal Craig-Bampton matrices. Use of these approx-

imate mode shapes is found to signif cantly improve accuracy compared to the nominal-

mode assumption but that overall performance is dominated by the accuracy of frequency

approximation. It is concluded that for rapid qualitative analysis nominal-mode mistuning

analysis with approximate mistuned modal stiffnesses should be used, for improved ac-

curacy with additional computational expense approximate non-nominal mode mistuning

analysis should be used, and with greater solution time and need for quantitative accu-

racy geometrically perturbed f nite element model results should be used in non-nominal

Craig-Bampton reduction and expansion.
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4.1 Introduction

For integrally bladed rotor (IBR) forced response prediction a nominal analysis assumes

that each airfoil is geometrically identical. This is sometimes referred to as a tuned analy-

sis. While this was standard practice for many years, it is well-know that each airfoil

has random geometric deviations within inspection tolerance limits. These variations are

caused by manufacturing deviations and usage effects such as erosion, foreign object im-

pacts, and airfoil blending repair operations. Such geometry deviations are responsible for

variations in airfoil frequencies and mode shapes.

In the presence of random airfoil geometries, rotor cyclic symmetry breaks down, re-

sulting in disruption of nodal diameter response and repeated root splitting. Instead of a

single repeated root there will be nb-blade, closely spaced natural frequencies. A single

excitation frequency near the tuned repeated natural frequency will then excite multiple

modes. Each mode’s amplitude is a function of its proximity to the excitation frequency,

the modal forcing of the mode, and modal damping. The superposition of modal response

from the multiple excited modes can lead to modal energy localization in a small blade set.

This localization can, and does, lead to forced response results signif cantly greater than an

excitation of the tuned model. This is known as mistuned response amplif cation.

It is clear that mistuning is a stochastic phenomenon governed by geometry variations

of each individual IBR. This complicates the tasks of quantifying IBR forced response and

requires conservative design margins or predictions of the stochastic behavior. Stochastic

behavior prediction is more valuable because reliability can be explicitly quantif ed and

the effect of design changes can be explicitly determined. For instance, given a predicted

distribution of mistuned response, new geometric tolerances could be established to reduce

mistuning. A stochastic simulation requires multiple mistuning calculations, and therefore,

reduced-order models (ROMs) for mistuning have been actively researched.
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While early research studied lumped parameter models to def ne the basic principles of

mistuning [3, 5, 6, 10, 13], more recent work has been based on using f nite element model

(FEM) based ROMs. A foundation for mistuning work that would come decades later was

established by Craig and Bampton, almost the same year that the initial analytical mistun-

ing studies were beginning [14]. The Craig and Bampton work def ned an approach for

model substructuring based on constraint modes at substructure interfaces and the f xed-

boundary normal modes of the interior structures. The def ned Craig-Bampton Component

Mode Synthesis (C-B CMS) approach was computational eff cient and easily implemented

technique. Irretier would use the C-B CMS approach to model a simple 2-D mistuned

bladed disk model and demonstrated the process of using a f nite element method to pro-

duce required response substructures [15].

A rotor mistuning CMS solution technique, applicable to modern day design practice,

was shown by Castanier, et al. [16]. The approach used cyclic-sector f nite element pre-

dictions of modal quantities, stiffness, and mass matrices for use in a CMS approach that

used disk-induced constraint modes. Use of disk-induced constraint modes limits inter-

face degrees of freedom (DOF) and reduces the assembled substructure matrices size and

solution time. Their approach assumes that mistuned response can be approximated by lin-

ear combination of tuned modes, limiting itself to perturbation of airfoil frequencies, and

ignoring geometric mistuning effects on constraint modes and cantilevered substructure

mode shapes. Results compared favorably to analytical case studies [17]. The analytical

studies validated the method with a FEM that used airfoil Young’s modulus perturbation

to represent mistuning. As such, the airfoil substructures maintained their nominal mode

shapes and the full models themselves were only an approximation of geometric mistun-

ing. In the validation study, accuracy was degraded by excessive interface stiffness caused

by the disk-induced constraint mode assumption and an iterative approach to artif cially

adjust mistuned modal stiffnesses was employed for solution improvement. The approach
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has been widely used by the turbomachinery industry and software development led to

the mistuning prediction software, named REDUCE. The approach is also referred to as

a Component Mode Mistuning (CMM) approach. Later, the REDUCE CMS method was

modif ed by Bladh, et al. to account for shroud interfaces [18].

Bladh et al. developed a Craig-Bampton CMS approach that used a Secondary Modal

Analysis Technique (SMART) to further reduce assembled substructure matrices size [19,

20]. Because the approach is based on C-B CMS, the interface stiffness between substruc-

tures is more accurately represented. The resulting model will have a larger set of DOF

compared to REDUCE, but the SMART approach conducts an eigenanalysis of the C-B

reduced matrices to create a second reduced-basis. The SMART results are used in a mis-

tuning projection technique to accurately predict mistuning with fewer DOF and a more

accurate model of the constraint mode stiffness. As with REDUCE, validation was con-

ducted with a full FEM that perturbed the Young’s modulus for each airfoil to represent the

mistuning.

Lim et al. investigated the mistuning impact of large geometric deformations caused by

Foreign Object Damage (FOD) [21]. The solution approach uses CMS and divides the

rotor into two substructures, a tuned bladed disk and the set of mistuned airfoils. In the

formulation, all DOF in the mistuned airfoil substructure are treated as interface DOF. This

leads to large ROMs when all the blades are geometrically mistuned. By considering a

single FOD deformed airfoil, the number of model DOF is greatly reduced. The two model

substructures are coupled through attachment modes created by applying unit forces to the

interface region of the tuned bladed disk. The authors noted that these attachment modes

can lead to matrix ill-conditioning and resulting numerical instability due to the fact that

displacement values of the attachment modes are much less than those of normal modes.

Also, the attachment and normal modes may not be independent. To overcome the numer-

ical challenges caused by the attachment modes, Lim, et al. developed a ROM approach
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based on the mode acceleration method based on static mode condensation [22]. The mis-

tuned system is transformed to a reduced basis space of the tuned system modes and a set

of static def ection shapes that account for the mistuning. These static def ection shapes can

be obtained without the need to conduct a more expensive modal analysis. A single blade

deformed by a FOD impact was considered to reduce the number of static analyses. Both

papers were exceptional as the f rst to address geometric effects on a mistuned system.

An alternative to the CMS approach was developed by Yang and Griff n [27, 28]. Their

approach created a reduced model through transformation of the full system model to a

modal basis of tuned modes. In this case, the rotor is treated as a single structure and

avoids the challenge of modeling substructure interface stiffness. The number of reduced

DOF is determined by the retained tuned modes. The response of the mistuned system is

approximated by a weighted sum of a subset of nominal modes, and mistuning is intro-

duced by projecting the mistuning onto the retained nominal modes. For computational

simplicity, their approach assumed Young’s modulus mistuning and the stiffness perturba-

tions are proportional to the airfoil frequency mistuning. This approach has been widely

used by the turbomachinery industry and led to the Subset of Nominal Modes (SNM) mis-

tuning prediction software. This model is attractive because it can be constructed from a

cyclic sector f nite element model, results in a small ROM, and simplif es disk-blade inter-

face modeling. The method was demonstrated on a two-dimensional rotor model and, as

with the prior mistuning ROMs, validation was conducted on a rotor FEM that represented

mistuning through Young’s modulus mistuning.

Sinha expanded the SNM approach for geometric mistuning and labeled the approach

MultipleModal Domain Analysis (MMDA) [32]. The approach represents the blade geom-

etry variation through a spatial statistics model as shown by Garzon et al. [33]. The MMDA

approach uses nominal system tuned modes and tuned modes of rotors having perturbed

geometry based on the spatial statistical analysis. The spatial statistical analysis produces
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a set of principal component modes that def ne the geometric deviations with a reduced

basis. The perturbed geometries consist of the nominal geometry with the addition of each

retained principal component mode. The ROM dimension is the number of tuned modes

retained multiplied by the number of retained principal component modes. This is still an

approximate basis for the airfoil mode shapes since the actual geometry of the airfoils is not

used to generate the modal basis. The approach uses results from a cyclic sector analysis

and sector DOF are transformed to the new basis through pre- and post-multiplying ma-

trices. The approach was demonstrated on a geometrically-perturbed academic rotor and

showed excellent accuracy for a single mode.

While an MMDA is an effective ROM, there can still be large computational costs asso-

ciated with the transformation of physical sector DOF to the new basis, particularly when

there are a large number of DOF in the disk. Tuned and mistuned stiffness matrices are used

in the calculation and pre and post multiplications of these matrices by tuned modes and

perturbed modes are required. For the 16 bladed rotor example in this work, the MMDA ap-

proach would require 544 matrix operations. When many several modes are retained with

large DOF models, it can require signif cant computational time. The reduced order model

resulting from this basis transformation, for the 16 bladed rotor example in this work, would

require an 800 x 800 full matrix eigenvalue problem compared to the 2632 x 2632 reduced

matrix from the C-B CMS methods in this work. The C-B matrices are 40% sparse which

reduces computational time and the reduced order model construction is simplif ed, requir-

ing only 34 matrix operations. The CMS approach also conducts many of its operations on

the smaller airfoil substructure models which further reduce computational costs. Sinha’s

work also did not demonstrate the use of the nominal-mode approximation for the problem,

and therefore did not fully demonstrate the need to account for non-nominal modes.

Reduced-order methods have been developed that rapidly predict mistuned rotor re-

sponse by approximating mistuning with a nominal-mode basis and airfoil modal stiffness
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perturbation. Nominal-mode approximation assumes that the geometry of each airfoil is

identical and the geometric perturbations that alter modal stiffness do not perturb mode

shape. This work investigates the accuracy of that approximation and develops several

Component Mode Synthesis based reduced-order mistuning models that explicitly account

for geometric deviations using both nominal and non-nominal mode shape approaches. The

f rst represents the prevailing industry method and uses nominal-mode substructure reduc-

tion with airfoil substructure modal stiffnesses perturbation using geometrically-perturbed

cantilevered airfoil f nite element models. This approach demonstrates effective qualita-

tive predictions that identify relative mistuning amplif cation but, when compared to an-

alytical results from a full geometrically-perturbed integrally bladed rotor model, shows

signif cant (∼20%) errors in maximum predicted mistuning amplif cation. For blade-to-

blade response prediction at specif c frequencies, dramatic (>100%) errors are demon-

strated. The second approach uses nominal-mode substructure reduction and mistuned air-

foil modal stiffness perturbations from reduced-order modal methods. The reduced-order

airfoil model reduces computational time while enabling qualitative mistuning prediction.

The third method uses nominal-mode substructure reduction, mistuned modal stiffnesses

from geometrically-perturbed airfoil f nite element models, and expands results with non-

nominal Craig-Bampton matrix for each airfoil. Though improvements in quantitative pre-

diction of maximum response frequency and response amplitudes are found for all modes,

the method was inconsistent and is not elevated above a qualitative tool. The fourth ap-

proach uses non-nominal mode substructure reduction and expansion using non-nominal

Craig-Bampton matrices generated from geometrically-perturbed f nite element models.

This approach demonstrates excellent prediction of peak mistuning amplif cation with pre-

diction errors below 1%. A f fth approach uses reduced-order methods to approximate the

non-nominal Craig-Bampton matrices. Use of these approximate mode shapes is found

to signif cantly improve accuracy but that overall performance is dominated by accurate
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frequency approximation. It is concluded that for rapid qualitative analysis, nominal-mode

mistuning analysis with approximate mistuned modal stiffnesses should be used, for im-

proved accuracy with additional computational expense approximate non-nominal mode

mistuning analysis should be used, and with greater solution time and need for quantita-

tive accuracy geometrically perturbed f nite element model results should be used in non-

nominal Craig-Bampton reduction and expansion.

The following section gives themathematical description of the nominal and non-nominal

mode approximations of mistuned response. The reduced-order approach to model geomet-

ric variations and the reduced-order substructure modal analysis approach are described in

Subsection 4.2.2. These reduced-order modeling approaches are are then demonstrated in

Section 4.3 on an advanced IBR conf guration.

4.2 Theory

The f rst subsection describes the use of a C-B CMS approach for mistuning analysis us-

ing a nominal-mode approximation. The second section develops new nominal and non-

nominal mode approaches to account for geometric mistuning.

4.2.1 Nominal-Mode Reduced-Order Mistuning Model

Prior mistuning CMS ROM developments have assumed nominal-mode approximation of

mistuned modes. Castanier et al. used a modif ed CMS approach of nominal cantilevered

blade normal modes and disk-induced constraint modes. In their work, overly stiff results

were obtained because of the constraint mode approximation that negatively impacted accu-

racy. Bladh et al. use a C-B approach which more accurately quantif ed constraint stiffness

and used SMART for further model analysis. Validation of both approaches was con-

ducted with rotor FEMs that represented mistuning by perturbation of Young’s modulus.
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Because of this, geometric effects were not explicitly considered and airfoil substructure

mode shapes remained nominal.

Because of its accuracy, the C-B approach is the basis for further geometric mistuning

model development and described in detail. The C-B approach is attractive for its ability

to reduce computational time and memory required for large numerical models while still

providing an exact solution if, in the limit, all modes are retained. Using this approach, an

engine rotor is divided into one disk substructure and nb blade substructures. The shared

nodes between blades and disk are boundary nodes while those that remain are interior.

The C-B method uses f xed-boundary normal modes and boundary constraint modes as

the reduced basis. Each substructure is reduced independently and later coupled using a

compatibility matrix.

The boundary constraint static modes are derived from a partitioned form of the static

displacement equation. The matrix and vector quantities of the system of equations are

partitioned by interior and boundary DOF. This leads to







kbb kbi

kib kii













ub

ui






=







f b

f i






(4.1)

where the superscripts b and i refer to the boundary and interior DOF. Static constraint

modes are calculated by assuming that each boundary DOF has successive unit displace-

ment, all other boundary freedoms are f xed, and interior freedoms are free. By assuming

that forces on interior freedoms, f i, are zero, the system of equations

kibub + kiiui = 0 (4.2)

allow for the solution of ui as a function of ub
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ui = −
[

kii
]−1 [

kib
]

ub = Φcub (4.3)

where Φc is the constraint mode matrix.

The f xed-boundary normal modes of the substructure are computed by partitioning the

mass matrix according to boundary and interior freedoms







mbb mbi

mib mii






(4.4)

and solving the generalized eigenvalue problem

kiiΦn = ΛmiiΦn (4.5)

where Φnmatrix of normal modes and Λ is the diagonal matrix of eigenvalues . Having

both Φc and Φn enables transformation of the model’s physical DOF, u, to a modal domain

u = Φcbα (4.6)

where

Φcb =







I 0

Φc Φn






(4.7)

and

α =







αb

αi






(4.8)

where αb are the modal coordinates of the constraint modes and αi are the modal coor-

135



dinates of the f xed-boundary normal modes. The modal coordinates, αb, are equivalent

to ub because of the identity matrix in Φcb. Transforming the substructure matrices from

the physical domain to the modal domain reduces the matrix order to the sum of the num-

ber of retained constraint and f xed-boundary normal modes. This transformation reduces

computational expense when the number of interior DOF are large, the number of retained

modes is small, and number of interface DOF is small. The substructure stiffness matrix

transforms to the C-B retained modes basis

k̂ =
[

Φcb
]T
k
[

Φcb
]

=







k̂bb 0

0 k̂ii






(4.9)

where

k̂bb = kbb + kbiΦc (4.10)

and

k̂ii = [Φn]T kii [Φn] (4.11)

where k̂ii is the matrix of modal stiffnesses, i.e. a diagonal matrix of the system eigenval-

ues.

The reduced mass matrix of the substructure is

M̂ =
[

Φcb
]T
M
[

Φcb
]

=







m̂bb m̂bi

m̂ib m̂ii






(4.12)

m̂bb = mbb + [Φc]T mib +mbiΦc + [Φc]T mii [Φc] (4.13)
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m̂bi =
[

m̂ib
]T

= mbiΦn + [Φc]T mii [Φn] (4.14)

m̂ii = [Φn]T mii [Φn] (4.15)

where mii is the identity matrix because of the mass normalized Φn. This completes the

calculation of the reduced substructures matrices.

Coupling substructures requires that geometric compatibility is maintained at joined sub-

structure boundaries. This requires

α1
b = α2

b = ub = qb (4.16)

where the coupled substructure modal coordinates, α, are transformed to a set of indepen-

dent modal coordinates, q, through a matrix transformation S
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(4.17)

that ensures equality at coupled substructure boundary DOF. The above equation is for two

joined substructures and can be extended for multiple interfaces.

For an nb-bladed rotor system the assembled stiffness is
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K̂ =
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(4.18)

where

K̂bb = SDk̂
bb
DSD +

nb
∑

r=1

Srk̂
bb
r Sr (4.19)

where and the summation occurs over each of the r substructures. The kiiD substructure

references the disk substructure and 1 through nb identif es each airfoil. The assembled

mass matrix is

M̂ =


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(4.20)

M ib
r = M bi

r = m̂ib
r Sr r = 1, . . . , nb (4.21)

M bb = SDm̂
bb
DSD +

nb
∑

r=1

Srm̂
bb
r Sr (4.22)

and the summation occurs over each of the r substructures. This completes the assembly

of the reduced-order system model. These matrices will be ni × ni where ni is the sum

of the number of interface DOF and retained f xed-boundary normal modes for the system.
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Solution of the reduced basis eigenproblem

K̂αi = λiM̂αi i = 1, . . . , nm (4.23)

where αi is the ith CMS mode. The expansion to the physical domain for each airfoil

substructure is

uk = Φcb
k Ak (4.24)

where A is the matrix of retained CMS eigenvectors for the kth substructure and

Ak =







Ab

Ai


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k

k = 1, . . . , nb (4.25)

and the kth substructure C-B matrix is

Φk =







I 0

Φc
k Φn

k







for each of the k airfoil substructures.

To implement a CMM approach such as REDUCE, mistuning is modeled as a perturba-

tion in airfoil substructure modal stiffness, k̂iinb
, which is equivalent to a perturbation of the

cantilevered airfoil natural frequency

[

k̂iii,i

]

k
= (1 + δk,i) Λ0

i,i (4.26)

where
[

k̂iii,i

]

k
is the modal stiffness for the ith retained mode for the kth airfoil substruc-

ture. The nominal arifoil eigenvalues are in the diagonal matrix Λ0
i,i and the mistuning

percentage for the kth airfoil and ith forms the matrix δk,i. Because only modal stiffnesses
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are perturbed, there is an assumption that the mistuned modes of a blade can be accurately

approximated with a linear combination of tuned modes. In practice, the values of δk,i

are either prescribed or obtained through empirical measurement of airfoils variations and

using their percentage difference from average. Capiez-Lernout and Soize developed a

nonparametric model of random uncertainties for mistuned bladed disks for this parameter

[40]. A follow-on effort by these authors modif ed these dispersions based on an estimate

from three geometric parameters [41]. Past work has not linked δk,i and explicit geometric

variations and has not accounted for non-nominal mode effects. An approach to do so is

def ned in Subsection 4.2.2.

The nominal-mode approximation of the mistuned system assumes that Φc, Φn, kib, m̂bb,

m̂bi are unchanged in the CMM model. Geometric variations will alter all of these quanti-

ties to some degree, which negatively impact the accuracy of the nominal-mode approach.

The following section develops a set of approaches to explicitlymodel geometric deviations

and account for non-nominal mode shapes of airfoil substructures.

4.2.2 Geometric Mistuning with Component Mode Synthesis

Methods

Given that explicit modeling of geometric effects and the modal variations they induce are

signif cant to accurate mistuning prediction, there is a need for an eff cient geometric mis-

tuning model. It is proposed that incorporating geometric variations in a C-B CMS solution

will enable more accurate response prediction of a geometrically mistuned rotor. Several

approaches will be def ned in the subsections below. Common to each is the need to model

airfoil geometry deviations in a reduced-basis. Retention of geometric deviations in the

physical domain increase computational complexity as each airfoil surface can be def ned

by hundreds and sometimes thousands of node spatial coordinates. The approach described
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reduces geometric def nition to 15 coordinates for the example problem in Section 4.3.

Airfoil geometry can be collected using coordinate measurement machines that obtain

spatial data through a geometry traversing probe. Each measured airfoil may provide thou-

sands of data points. Eff ciently modeling these variations for the following ROM de-

velopments is benef cial. Previous works have used PCA to model geometric deviations

[96, 33]. PCA is attractive given its ease of implementation and minimized set of retained

basis vectors that represent correlated geometry variations. In addition, the statistics from

the analysis can be used to generate stochastic airfoil geometry models. The stochastic

application of this approach has been demonstrated in prior works by Brown and Grandhi

[97, 98].

PCA is implemented by storing n measured three-dimensional coordinate data points in

vector x ∈ R
3n. A set of p measured airfoils results in matrix, X ∈ R

3n,p. Since it is of

interest to understand the variations from the average blade, the mean value of each row

is subtracted from each member of the row to give a matrix of measured deviations, ∆X,

where each element is

∆xi,j = xi,j − x̄i i = 1, 2, . . . , 3n; j = 1, 2, . . . p (4.27)

where x̄i is the average of the ith row. It is important to note that the average, x̄i, is not

necessarily the original design intent. Also, subtracting the row mean from each element

makes the expected value of each row zero. The f rst-order covariance matrix of ∆X,

Σ∆X , def nes the statistical relationship between a measurement point deviation and all

other points, and its eigensolution leads to eigenvectors that can be used to form a new

subspace optimally representing variation. This is written in standard eigenproblem form

Σ∆XΨ = ΨD (4.28)

141



whereD andΨ are the eigenvalue and eigenvector matrices, respectively. The eigenvectors

are the principal components modes of the measured data, and the eigenvalues are the

principal component variances that indicate the data variance each principal component

captures. Based on these eigenvalues, graphical and statistical methods can be used to

retain a limited set of basis vectors. Also of importance, the principal components are

orthogonal, and therefore, uncorrelated statistically. The PCA transforms a large set of

correlated parameters into a small set of uncorrelated parameters.

Transformation of the measured deviations, ∆X, to the principal component basis re-

quires the linear operation

Z = ΨT [∆X] (4.29)

where the eigenvector matrix is multiplied by the deviation matrix to give the z-score ma-

trix, Z ∈ R
np,p with np the number of retained principal component modes. These scores

are effectively regression coeff cients for the new principal component basis and def ne

the participation of each PCA mode in each measured geometry. The above algorithm,

Eqs. 4.27-4.29, is the covariance method of PCA and the columns of Z represent the

Karhunen-Loeve transformation. The Karhunen-Love transformation is the representation

of a stochastic process as a linear combination of orthogonal functions determined by the

covariance function of the process. When the coeff cients of the linear combination are

determined through a statistical sample, this approach is known as PCA, or Proper Orthog-

onal Decomposition (POD), or the Hotelling transform. Statistical analysis of the z-scores

enable def nition of the stochastic parameters of the airfoil geometry model.

x̃ = x̄+

p
∑

i=1

ξizi (4.30)

where x̃ a vector def ning the random geometry, x̄ the nominal geometry, and ξi is a random
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scalar drawn from the distribution of the zi z-score distribution. This geometry model is

used with the following methods to predict geometrically mistuned rotor response.

4.2.2.1 Nominal-Mode Approximation with Geometrically-Perturbed FEM

Airfoil Modal Stiffnesses

The f rst method uses C-B CMS, nominal-mode approximation (NMA) for airfoil sub-

structures, and uses geometrically-perturbed FEMs to determine the eigenvalues (λFEM )

that are needed for k̂iik ,

[

k̂iii,i

]

k
= [λi]k (4.31)

where [λi]k are from geometrically perturbed FEM. The CMS reduction remains in the

nominal space with a nominal mode C-B for all k airfoil substructures.

Φcb
NMA =
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I 0

[Φc]0 [Φn]0






(4.32)

where the superscript 0 refers to the nominal substructure model. The reduced CMS eigen-

problem is then

K̂NMA [αi]NMA = λiM̂NMA [αi]NMA (4.33)

where the subscriptNMA refers to the nominal mode approach. The expansion to physical

space for this approach is then

uk =
[

Φcb
NMA

]

k
[ANMA]k (4.34)

for each of the k substructures.
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This approach is representative of the CMM (REDUCE) method available to the turbo-

machinery industry. While representative, it does not use disk-induced constraint modes

and therefore does not suffer excessive stiffness at the disk-airfoil substructure boundaries.

Prior applications of the C-B CMS approach have not considered geometric mistuning,

have not used geometrically-perturbed FEMs to provide modal stiffness perturbation, and

not been compared to a geometrically-perturbed IBR FEM.

4.2.2.2 Nominal-Mode Approximation with Approximate Airfoil Modal

Stiffness Perturbation

By approximating the modal stiffness variations caused by geometric deviations, the com-

putational costs associated with creating airfoil substructures and δnb,nm
can be eliminated.

Previous efforts have shown that airfoil eigenvalues can be accurately approximated with

a Taylor Series approximation using f rst-order sensitivities [99]. Sensitivity calculations

can be computationally expensive when calculated numerically via f nite difference meth-

ods that require FEM evaluations for each design parameter. A semi-analytic method, as

shown in Chapter 2, replaces the costly calculations of the process, i.e. decomposing the

stiffness and mass matrix and solving the matrix eigenvalue problem.

While effective, the results from Chapter 2 showed a sensitivity of predicted gradient

to f nite difference step size used for perturbing mass and stiffness matrices. A numerical

f nite difference approach based on airfoil FEMs did not have this sensitivity and showed

consistent gradient values regardless of step size. This indicates the linear relationship

between geometric deviations and modal response for the range of deviations under con-

sideration. A numerical f nite difference approach would require signif cant computational

time if conducted in the physical domain. The use of the reduced-order geometry model

signif cantly reduces the number of required FEM solutions. Because of this and the in-

sensitivity of gradients to step size, the numerical approach in the PCA mode space is used
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for sensitivity calculations. The semi-analytic methods used in Chapter 2 are important for

future research in multi-point approximation of modal response that would become imprac-

tical with a numerical f nite difference approach. A suggested multi-point modal response

approximation for future exploration is the gradient Kriging method used in Chapter 3.

The numerical sensitivity methods combined with the reduced-order geometry model

results described earlier leads to the following principal component mode eigenvalue sen-

sitivities

∂λ0
i

∂ψj
≈
(

λ
(0+4ψj)
i − λ0

i

4ψj

)

(4.35)

where λ0
i is the nominal eigenvalue, λ

(0+4ψj)
i is the numerically perturbed value, and4ψj

is the percentage change (step-size) of the jth principal component. As shown in Figure

2.15, the result is insensitive to a broad range of step-size.

For the nominal mode C-B CMS approach, an eigensensitivity-accelerated computation

of Eq. 4.26 is

[

˜̂
kiii,i

]

k
= λ0

i +

np
∑

j=1

∂λ0
i

∂ψj
∆ [ψj ]k (4.36)

where np are the number of principal component vectors. This method represents fre-

quency variation and computational burden is effectively eliminated once the initial f nite

difference calculations are completed. The Craig-Bampton space eigenproblem with this

approximation becomes

˜̂
KNMA [αi]NMA = λiM̂NMA [αi]NMA (4.37)

where the stiffness matrix ref ects the approximation. Expansion continues with the nomi-

nal C-B matrix.
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4.2.2.3 Nominal-Mode Approach with Non-Nominal Mode Expansio n

The prior two approaches address geometric effects on modal stiffness accurately, but nei-

ther considers non-nominal mode shape. The most attractive approach would be to use

nominal-mode approximations to predict the CMS-basis modal response and only use non-

nominal mode shape results during expansion to the physical domain. This would allow

use of existing mistuning ROMs with a mode shape correction step during expansion. This

assumes that the predicted α from nominal-mode approximation and non-nominal mode

approximation are similar.

In this approach the nominal mode approach is used to transform the physical substruc-

tures to the Craig-Bampton domain, coupled, and the resulting reduced system eigenprob-

lem is

K̂NMA [αi]NMA = λiM̂NMA [αi]NMA (4.38)

where the modal participation’s have been computed using the nominal mode approxima-

tion, [αi]. Using this nominal-mode approach with non-nominal mode expansion (NMA-

NNME), the expansion to the physical domain would include geometrically perturbed

eigenvectors in a C-B matrix,

[

Φcb
NNMA

]

k
=







I 0

Φc
k Φn

k






(4.39)

where the subscript NNMA refers to the use of geometrically perturbed airfoil substruc-

tures. The expansion to physical space for this approach is then

uk =
[

Φcb
NNMA

]

k
[ANMA]k (4.40)
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Should this approach be accurate, a reduced-order approximation of the modal quantities

could improve solution times. Because the NMA with geometrically perturbed substruc-

ture expansion results show an improvement over nominal-mode expansion, but still have

signif cant error, the approximation approach is not pursued.

4.2.2.4 Non-Nominal Mode Approach with Geometrically-Perturbed FEM

Mode Shapes

While the above approaches gain eff ciency using the nominal-mode approximation, some

quantif able error will be introduced. To reduce this error, a non-nominal mode approach

(NNMA) with geometrically-perturbed FEM mode shapes (φFEM ) are used in C-B CMS

substructure development. In the limit, this approach will provide the exact solution. This is

considered the use of a conventional analysis technique, C-B CMS, to the novel application

of geometric mistuning.

In this approach the nominal mode approach is used to transform the physical substruc-

tures to the Craig-Bampton domain, coupled, and the resulting reduced system eigenprob-

lem is

K̂NNMA [αi]NNMA = λiM̂NNMA [αi]NNMA (4.41)

where the modal participations have been computed using the non-nominal mode approxi-

mation, [αi]NNMA.

The expansion to physical space for this approach is then

uk =
[

Φcb
NNMA

]

k
[ANNMA]k . (4.42)

Because only a subset of the IBR DOF are perturbed with airfoil mistuning, effective

substructuring will lead to computational advantages. A large percentage, frequently over
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50%, of the IBRDOF are located in the disk substructure of the IBR. Since this substructure

is not altered during blade geometry perturbations, isolating the disk as a CMS substructure,

enables a single solution of this large model for all successive solutions of K̂αi = λiM̂αi.

Additional eff ciencies are possible by using a disk cyclic symmetry analysis to eff ciently

create the C-B matrix for the disk substructure. Each blade is considered as a separate

substructure and each can be eff ciently modeled because of the relatively small number of

DOF relative to the entire rotor.

With each airfoil being a separate substructure coupled to the larger disk substructure,

additional eff ciencies can be enabled throughmaximizing the value of each airfoil reduced-

order substructure once it has been calculated. The value can be maximized by reusing the

airfoil substructures to create multiple assembled mass and stiffness matrices by randomly

selecting from a generated library of airfoil substructures. In this approach a reduced set of

airfoil substructures are generated (~100) and are randomly sampled from n times where

n is the number of IBR airfoils. This approach is similar to the statistical bootstrapping

technique. Bootstrapping is the process of sampling from a small population of data where

the bootstrap sample is some number smaller than the number of population samples. Be-

cause mistuning is heavily dependent on the pattern of mistuned blades around the rotor,

this bootstrapping approach will accelerate prediction of the range of response. Accuracy

of this approach is dependent on the number of bootstrapping samples and the assumption

that the small bootstrap sample accurately represents the full rotor population. Previous

research has shown that small samples of mistuned rotors can accurately represent the full

population [8].
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4.2.2.5 Non-Nominal Mode Approach with Approximate Perturbed Mode

Shapes

A NNMA with approximate airfoil substructure C-B matrices will reduce the computa-

tional time associated with the solution approach of the previous subsection. For the local

approximation approach used in this chapter, a numerical approach is used to calculate

constraint mode sensitivities

∂ [φci ]

∂ψj
≈
(

[φci ]
(0+4ψj) − [φci ]

0

4ψj

)

(4.43)

where φci is the constraint mode for the ith constraint mode. The approximate constraint

mode for the kth substructure is calculated using the Taylor series expansion

[

φ̃ci

]

k
= [φci ]

0 +

np
∑

j=1

∂ [φci ]
0

∂ψj
4 [ψj ]k (4.44)

where d [ψj ]k is the change in principal component mode for the k
th airfoil.

To explicitly account for geometric effects, the f xed-boundary normal modes, Φn, must

also account for modal variations. Each vector in Φn should contain the eigenvectors of the

random airfoil. Rapid prediction of these eigenvectors is possible using

[

φ̃ni

]

k
= [φni ]

0 +

np
∑

j=1

∂ [φni ]
0

∂ψj
4 [ψj ]k (4.45)

where the sensitivities of the substructure mode shapes are calculated numerically

∂φni
∂ψj

≈
(

[φni ]
(0+4ψj) − [φni ]

0

4ψj

)

. (4.46)

A signif cant advantage to this method is that the sensitivities will be calculated for the

blade-alone models rather than the cyclic symmetry models that, because of the repeated
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roots, are diff cult to accurately calculate.

With the ability to eff ciently calculate random constraint and f xed-boundary normal

modes the Craig-Bampton matrix is random

Φ̃cb
k =







I 0

Φ̃c
k Φ̃n

k






(4.47)

which can be used to transform the perturbed physical domain mass and stiffness matrices

to the modal domain. The physical domain matrices are also perturbed from nominal and

their sensitivity can be computed numerically

∂K

∂ψj
=







∂kbb

∂ψj

∂kbi

∂ψj

∂kib

∂ψj

∂kii

∂ψj







where each partition is numerically calculated. The variation in the mass matrix is identi-

cally determined.

With these sensitivities, random computation of the relevant reduced matrices is

˜̂
kbb =

[

kbb
]0

+

np
∑

j=1

kbb

∂ψj
dψj +

[

[

kbi
]0

+

np
∑

j=1

kbi

∂ψj
dψj

]

Φ̃c (4.48)

˜̂mbb =

[

[

mbb
]0

+

np
∑

j=1

mbb

∂ψj
dψj

]

+
[

Φ̃c
]T
[

[

mib
]0

+

np
∑

j=1

zj
mib

∂ψj
dψj

]

+ · · ·

· · ·
[

[

mbi
]0

+

np
∑

j=1

mbi

∂ψj
dψj

]

Φ̃c +
[

Φ̃c
]T
[

[

mii
]0

+

np
∑

j=1

mii

∂ψj
dψj

]

[

Φ̃c
]

(4.49)

˜̂mbi =
[

˜̂mib
]T

=

[

[

mbi
]0

+

np
∑

j=1

mbi

∂ψj
dψj

]

Φ̃n + · · ·
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· · ·
[

Φ̃c
]T
[

[

mii
]0

+

np
∑

j=1

mii

∂ψj
dψj

]

[

Φ̃n
]

(4.50)

where ψj are from the PCA results. The random reduced matrix ˜̂
kii is calculated via eq.

4.36 and ˜̂mii is always the identity matrix.

The eigenproblem of the reduced-order system

˜̂
KNNMA [αi]NNMA = λi

˜̂
MNNMA [αi]NNMA (4.51)

and the solution in physical space is

ũk =
[

Φ̃cb
NNMA

]

k
[ANNMA]k . (4.52)

4.3 Results

The methods developed in the prior section are demonstrated on the Advanced Low Aspect

Ratio Fan (ADLARF), Figure 4.1, which is representative of modern IBR designs. This

IBR is sensitive to mistuning and has been rigorously studied under the GUIde (Govern-

ment, University, Industry) consortium to fund research in turbomachinery forced response

[90, 100]. Because airfoil geometry measurements are not available for this rotor, measured

deviations from a representative industrial IBR fan stage are used. The applied deviations

are identical to those used in a prior work developing blade-alone reduced order models

[99]. An exaggerated geometrically perturbed airfoil, with deviations scaled by more than

100 times, is shown in Figure 4.2 to show the representative shape of the distortion. Without

scaling for this f gure, the true deviations would not be visible. Results from a geometri-

cally perturbed 360-degree FEM provide the benchmark results for each of the mistuning

approximation techniques.
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The full rotor FEM, shown in Figure 4.3, uses 13952 linear hexahedral elements, 22784

nodes, 67776 active DOF, Ti-6-4 material properties, and is f xed in all directions at its aft

f ange as shown in Figure 4.4. Predicted modal responses are used in a modal harmonic

forced response analysis with each airfoil loaded circumferentially at each airfoil’s leading

edge tip node. While not representative of in-f ight loads, this does replicate conventional

traveling wave bench testing procedures [101]. A constant damping ratio, ζ , of 0.002 is

used for the forced response calculations. Results are shown for in-phase loading, repre-

senting a zero nodal diameter forcing condition. Forced response results are investigated

between 4 kHz and 6.5 kHz which showed three excited modes of interest. Table 4.1 shows

the f xed-boundary resonant frequencies for the nominal airfoil geometry. The modes of

interest in this analysis are modes eleven, thirteen, and seventeen (M11, M13, and M17).

These were the f rst set of modes excited to a signif cant degree by the zeroth harmonic ex-

citation that showed a difference between the nominal-mode approximation and full model.

Based on the full rotor mistuned and tuned analyses, the mistuning amplif cation at these

modes is 1.29x, 2.33x, and 1.22x. Tuned and geometrically perturbed f xed-boundary air-

foil substructures are used for the CMS mistuning methods. Both the full rotor validation

FEM and CMS airfoil substructures are constructed with a parametric model that retains

element number and topology to ensure consistency for each geometrically perturbed air-

foil. The full rotor models are constructed with a continuous mesh between airfoil and disk

substructures. Modal results and structural matrices are output from a commercial FEM

code and used in software algorithms written to implement the methods def ned in the prior

sections.

All mistuningmethods are based on a C-B CMS solution composed of one disk substruc-

ture and 16 airfoils substructures. With the def ned mesh density, the full FEM contains

67,776 DOF, leading to 67, 776 × 67, 776 matrices. This is a coarse model compared to

industry standard meshing practices, but useful for demonstrating the developed methods.
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The CMS solution includes the airfoil substructures with 34 nodes at the disk-airfoil bound-

ary, which leads to 102 boundary DOF per airfoil. Accounting for the entire rotor, there are

1632 total boundary DOF. To provide accurate results through a frequency range between

0 Hz – 6.5 kHz, 50 airfoil substructure cantilevered airfoil modes shapes and 200 disk

substructure mode shapes were required. The number of retained modes was determined

through a convergence between the full FEM and the CMS solution with a criteria set to

have the maximum mistuning predictions to be within 1%. This led to a reduced-order

CMS matrix size of 2632 × 2632.

Two types of results are considered in the following subsections. First, maximum rotor

forced responses are considered that show the peak forced response of the IBR. These

results give important response information over a wide range of frequencies. The second

type of result is blade-to-blade forced response. These results are shown at the maximum

forced response frequencies, selected from the maximum rotor forced response plots. The

blade-to-blade results show if the developed methods are accurately predicting response at

a local level. The results at the local level give a better indication of the methods ability

to model the physics of mistuning. The results at the blade level are also signif cant for

def ning the statistics of stress variation as part of a probabilistic mistuning assessment.

4.3.1 Nominal Mode Approach with Geometrically-Perturbed

FEM Airfoil Modal Stiffnesses

The f rst result case uses NMA-λFEM for airfoil substructure reduction and geometrically

mistuned airfoil FEMs to generate the eigenvalues used to determine modal stiffness in-

put for k̂iik . Figure 4.5 compares the maximum rotor response, in inches, predicted by the

NMA-λFEM and the geometrically-perturbed IBR FEM between 4 kHz to 6.5 kHz. While

differences exist, the NMA-λFEM predicts mistuning with suff cient quality (predicting
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the modes having low or high mistuning amplif cations) that its capabilities as a qualita-

tive design tool are evident. The FEM predicted mistuning amplif cations for M11, M13,

and M17 are 1.29x, 2.33x, and 1.22x, and NMA-λFEM predicts 1.30x, 2.76x, and 1.43x.

Quantitatively, errors between the two approaches are evident and are considered in detail

by plotting additional M11, M13, and M17 results in Figures 4.6-4.17.

The expanded M11 results in Figure 4.6 show generally good agreement between the

maximum rotor response predictions. The tuned peak is at 4319 Hz. with an amplitude of

0.009261 in., the maximum FEM peak is at 4331 Hz. with amplitude 0.01192 in. (1.29x),

and NMA-λFEM predicts the peak at 4319 Hz. with amplitude 0.01203 in. (1.30x). The

nominal-mode approximation appears to have produced a very accurate result when con-

sidering overall IBR mistuning amplif cation, though with a 12 Hz. error in predicted peak

frequency. Obvious differences in amplitudes exist at specif c frequencies with the largest

difference at 4319 Hz, where NMA-λFEM predicts its largest response and overpredicts

the FEM response by 16%. For a more detailed accuracy assessment, blade-to-blade am-

plitudes are plotted at three frequencies.

Figure 4.7 compares blade-to-blade amplitudes predicted from the FEM results at 4331

Hz. and the NMA-λFEM results at 4319 Hz., i.e. the comparison at predicted peak mis-

tuning frequencies. There are signif cant differences and NMA-λFEM fails to accurately

predict the pattern of mistuning amplif cation, underpredicting the peak responding blade

1 by 42% and overpredicting blade 10 by 98%. This error is driven by the difference in

peak response frequencies, and shows that an attempt to predict blade-to-blade response

with NMA-λFEM at the peak mistuning frequency would result in large errors for M11.

Errors are less severe when comparing method results at the same frequency. Figure

4.8 compares results at the NMA-λFEM predicted peak of 4319 Hz. At blade 1, NMA-

λFEM underpredicts by 10%, and at blade 10 NMA-λFEM overpredicts peak response by a

more reasonable 19%. It is also seen that NMA accurately predicts the mistuning response
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pattern.

Figure 4.9 compares results at the FEM predicted peak of 4331 Hz., and again results

look much more favorable than in Figure 4.7. For blade 1, NMA-λFEM under predicts

peak response by 6% and overpredicts blade 10 by 14%. As with Figure 4.8, the relative

pattern of mistuning is accurately predicted.

It is encouraging and a credit to NMA-λFEM , that for M11 the maximum IBR mistun-

ing amplif cation was predicted within 1% and at specif c frequencies the predicted blade

response error was no greater than 20%. This does not mean that this error is negligible. A

20% overprediction of response could negatively impact a design in terms of excessivemar-

gin that would be realized in increased weight or reduced performance. The NMA-λFEM

also mispredicts the maximum peak frequency, and the prediction at 4319 Hz. would be

incorrectly identif ed as the peak mistuning pattern. The accuracy of predicting IBR mis-

tuning amplif cation is not as accurate for the M13 and M17 results.

Figure 4.10 compares the predicted peak rotor response for NMA-λFEM and FEM for

M13. The tuned response peak is at 4814 Hz. with amplitude 0.006215 in., the mistuned

FEM peak is at 4793 Hz. with amplitude 0.01454 in. (2.33x), and the NMA-λFEM peak is at

4796 Hz. with amplitude 0.01716 in. (2.76x). The NMA-λFEM has overpredicted the FEM

predicted maximum mistuning amplitude by 18%. This error is of suff cient magnitude

that it could negatively impact IBR design decisions. The results also show a much smaller

difference between predicted maximum response frequency, 3 Hz., which would suggest

based on the M11 results that the blade-to-blade response at predicted peak frequencies

would be similar.

Figure 4.11 compares the blade-to-blade results at both methods’ predicted response

peaks, and unlike the M11 results, the location of the maximum blade is predicted cor-

rectly. However, also unlike the M11 results, there are signif cant errors in the prediction of

blade-to-blade response. Blade 2 underpredicts by 27%, blade 9 is overpredicted by 18%,
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and blade 15 overpredicts by 149%. In general, blade mistuning sequence is predicted ac-

curately with the exception of blade 15, which is signif cantly overpredicted. Based on the

M11 results, these errors might be reduced when a comparison between methods is made

at the same frequencies.

Figure 4.12 compares results at the FEM predicted maximum response frequency, 4793

Hz., and blade 2 underpredicted by 25%, blade 9 overpredicts by 17%, and blade 15 over-

predicts by 146%. A very minor reduction in error was achieved at the 4793 Hz. compar-

ison. The results at the NMA-λFEM predicted maximum frequency, 4796 Hz., in Figure

4.13 show similar results to Figures 4.11-4.12 with only a minor change to error magnitude.

Similar results were produced because of the small, 3 Hz., difference in peak frequency

predicted by the full FEM and NMA-λFEM models. It is important that in all cases the

mistuning pattern was incorrectly predicted, primarily because of the signif cant error at

blade 15.

Use of NMA-λFEM for M13 shows the need for improved mistuning modeling ap-

proaches. While it does qualitatively predict IBR mistuning amplif cation, the 18% error in

predicted maximum IBR mistuning and the 146% error in predicting the blade 15 response

could negatively impact a design’s weight and performance. The errors on specif c blades

could create problems when predicting the statistics of mistuned response. For example,

results for M13 would show a distribution of response with higher probabilities of large

response because of the signif cant overprediction of the blade 15 response. Further re-

search in the statistics predicted with the NMA-λFEM approach compared to the the FEM

approach are therefore recommended.

Figure 4.14 compares NMA-λFEM and FEM predicted maximum rotor response for

M17. The tuned response peak is at 6487 Hz. with amplitude 0.009109 in., the mistuned

FEM peak is at 6473 Hz. with amplitude 0.01108 in. (1.22x), the NMA-λFEM peak is at

6497 Hz. with amplitude 0.01304 in. (1.43x). The NMA-λFEM result has overpredicted
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the FEM result by 18%. The f gure also shows that the predicted rotor resonant response

peak adjacent to the maximum peak, at 6449 Hz., is signif cantly overpredicted by 84%.

This error is signif cant and shows a limitation of NMA-λFEM .

Continuing the analysis of M17, Figure 4.15 compares the blade-to-blade results at both

methods’ predicted peaks. The location of the maximum blade, blade 2, is not predicted

correctly by NMA-λFEM which predicts the maximum at blade 15. Instead, it underpre-

dicts the peak at blade 2 by 29%, and overpredicts blade 15 by 59%. There is also a 46%

underprediction of airfoil 9 and 49% underprediction of blade 10. There is a 24 Hz. dif-

ference in the methods’ predicted peaks, so as with M11, it is possible that results will

improve when methods are compared at the same frequencies.

Results at the frequency peak predicted by full FEM, 6473 Hz., are shown in Figure

4.16. Similar results to those in Figure 4.15 are found with blade 2 underpredicted by 35%,

blade 15 overpredicted by 49%, 45% underprediction of blade 9, and 43% underprediction

of blade 10. Results at the frequency peak predicted by NMA-λFEM ,6497 Hz., shown

in Figure 4.17, show the larger overpredictions with a 90% overprediction at blade 15. In

each f gure, the pattern of mistuning is not correctly predicted.

In summary, the NMA-λFEM approach did not reliably predict the peak responding

airfoil location, predicted maximum rotor mistuned amplif cation with signif cant errors

(v20%), and showed dramatic errors in blade-to-blade response predictions (>100%). This

error can have ramif cations on probabilistic calculations which consider not just the peak

blade, but all blades on the rotor [98]. A nominal-mode approximation does qualitatively,

identifying high and low mistuning amplif cations, represent the mistuned response of a

geometrically mistuned rotor to a degree that enables its useful application in design. But

as a quantitative tool, the approach could lead to inaccurate design decisions. A suggest

scenario would be a mistuning screening be conducted with the a nominal-mode approach

and for critical modes near design constraints, a more accurate method such as developed
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in Subsection 4.2.2.4 and 4.2.2.5 should be applied.

The NMA-λFEM approach uses FEMs of geometrically-perturbed airfoils to provide

modal stiffness perturbations. These f nite element simulations contribute to the compu-

tational time required for the solution. Reducing the solution time associated with the

modal stiffness perturbation would benef t the design process and enable a more thorough

exploration of the mistuned response given a f xed computational budget. The following

subsection applies approximate modal methods to predict substructure mistuning to reduce

the computation cost of the approach while retaining in its qualitative prediction capability.

4.3.2 Nominal Mode CMM with Approximate Airfoil Modal

Stiffness Perturbation

The prior subsection illustrated the ability of NMA-λFEM to qualitatively predict mistuned

amplif cations, but was based on geometrically-perturbed airfoil FEMs to provide modal

stiffness perturbations. This section uses the approximate the airfoil modal eigenvalue pre-

diction approach described in Subsection 4.2.2.2 to generate the mistuned modal stiffnesses

at virtually no computational cost. These results will determine if the errors introduced by

the approximations negatively impact the qualitative prediction capability. Results com-

paring the approximations of geometrically-perturbed cantilevered airfoil frequencies are

shown followed by their impact on predicted mistuned forced response with a nominal

mode approach.

Figure 4.18 compares predicted blade-to-blade frequencies forM11 from the full geometrically-

perturbed airfoil FEM, ωFEM , and the approximate approach, ωa, described in Subsection

4.2.2.2. The approximate model qualitatively represents the FEM results well, demonstrat-

ing the ability to capture the high and low frequency airfoils and the overall pattern of

frequency variation. The FEM predicted range from minimum to maximum frequency is
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157 Hz., the average difference between approximate and FEM predictions is 3.2 Hz., and

the maximum difference is 8.2 Hz. at blade 9. The predicted frequencies from the FEM

and approximate method are then used to predict the mistuned M11 frequency response.

Figure 4.19 shows three rotor frequency response functions (FRF) for M11 that compare

NMA-λFEM , NMA -λa, and the FEM results. The offset in FRF peaks caused by the the

errors in the approximate model are evident at several peaks. While many of the peaks

predicted by either NMA solution have nearly the same amplitude, there is a signif cant

difference at the peak frequency predicted by NMA-λFEM , 4318 Hz. At this frequency,

NMA-λa predicts 0.009247 and NMA-λFEM 0.01203, a 30% increase in predicted re-

sponse. This variation in response is caused by the small variations in frequency shown

in Figure 4.18. This large mistuned forced response variation demonstrates the impact of

eigenvector sensitivity in the presence of a system with closely spaced frequencies. While

generally well know that mistuning is sensitive to frequencies, the literature does not ex-

plore how sensitive it is and these results provide a realistic demonstration. Despite the

demonstrated sensitivities, the results do not signif cantly change the qualitative accuracy

of the NMA-λa prediction and are therefore concluded to be acceptable to qualitatively pre-

dict mistuned response. The NMA-λa underpredicts peak mistuned amplif cation by 2.9%

and NMA-λFEM overpredicts by 1%. Analysis of the M13 provides additional evidence to

support this f nding.

Figure 4.20 compares predicted blade-to-blade frequencies forM13 from the full geometrically-

perturbed airfoil FEM, ωFEM , and the approximate approach. Again, ωa shows excellent

qualitative prediction of ωFEM . The FEM predicted range from minimum to maximum

frequency is 118 Hz., the average difference between approximate and FEM predictions

is 1.45 Hz., and the maximum difference is 7.2 Hz. at blade 11. The predicted frequen-

cies from the FEM and approximate method are then used to predict the mistuned M13

frequency response.
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Figure 4.21 plots maximum rotor response FRFs for M13 from the different modal stiff-

ness models and the FEM result. The NMA-λa overpredicts peak mistuned amplif cation

by 12.6% and NMA-λFEM overpredicts by 18%. This apparent improvement in accuracy

is a function of the input frequency error and error induced by the nominal mode approx-

imation, not a improvement in the physics-based modeling. At the second large peak in

the response at 4867 Hz., a signif cant difference is again seen between the two input fre-

quency arrangements, with the NMA-λa solution overpredicting the NMA-λFEM peak by

43%. Despite these quantitative differences in mistuned frequencies, the NMA-λa qualita-

tively predict the mistuned amplif cation. The following M17 results continue to support

this claim.

Figure 4.22 compares predicted blade-to-blade frequencies for M17 from the IBR FEM

and the approximate approaches. Again, the approximate modal results show excellent

modal stiffness prediction accuracy. The FEM predicted range fromminimum to maximum

frequency is 195 Hz., the average difference between approximate and FEM predictions is

8.9 Hz., and the maximum difference is 30.1 Hz. at blade 9. The predicted frequencies from

the FEM and approximate method are then used to predict the mistuned M13 frequency

response.

Figure 4.23 plots maximum rotor response FRFs for M17 from the models. Again,

a clear difference is seen between the methods. The difference in predicted maximum

mistuning response is small, with NMA-λa overpredicts peak mistuned amplif cation by

15.1% and NMA-λFEM overpredicts by 18.0%. The NMA-λa results continue to overpre-

dict the second highest FRF peak at 6449 Hz. by a signif cant margin. The improvement

in NMA-λa not a physics-based improvement, rather a fortunate result based on the input

approximate frequencies and errors in the nominal mode approximation.

From these results, it can be concluded that approximate predictions of mistuned modal

stiffnesses can be used to qualitatively predict mistuned response. Use of approximations
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eliminate the solution cost for airfoil modal stiffness perturbation and therefore increases

design tool throughput. Results from M13 and M17 reinforce the extreme sensitivity of

mistuning predictions to modal stiffness input and indicate that for use of approximate

methods in a quantif ably accurate prediction would require near exact approximations.

This f nding will recur in Subsection 4.3.5. As in the prior subsection, the method does not

provide a quantitatively accurate result, showing that geometric deviations must be con-

sidered in more than airfoil modal stiffness perturbation. The following section applies a

simplif ed approach to account for non-nominal mode shapes for the prediction of mistuned

forced response.

4.3.3 Nominal Mode Approach with Non-nominal Mode

Expansion

Incorporation of non-nominal mode shape information into the mistuning calculation can

signif cantly increase computational costs. The results in this subsection are based on the

method developed in Subsection 4.2.2.3 that uses nominal mode reduction of substructures,

solution of the coupled substructures in the nominal domain, and expansion in the non-

nominal domain. This approach assumes that the modal solution in the C-B basis is not

sensitive to the difference in nominal and non-nominal substructures. This non-nominal

mode expansion approach is annotated NMA-NNME-λFEM . These results are based on

using geometrically-perturbed airfoil FEMs to predict modal stiffness variation.

Figure 4.24 compares the M11 maximum rotor response results from NMA-λFEM and

NMA-NNME-λFEM . The most signif cant change from NMA-λFEM to NMA-NNME-

λFEM is that the latter predicts the peak mistuned response frequency within 1 Hz., whereas

the NMA-λFEM predicted peak is 12 Hz. higher. This difference results in NMA-λFEM

incorrectly predicting the maximum mistuning blade-to-blade response pattern, as shown
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in Figure 4.7. Figure 4.24 shows that there has been some improvement in the predictions

with the results of NMA-NNME-λFEM generally closer to the FEM results, in particular

for the 2nd − 6th and peaks. Predicted maximum response error has increased slightly

with a NMA-NNME-λFEM overprediction by 10% compared to the underprediction of 6%

by NMA-λFEM at the FEM predicted maximum response frequency. The blade-to-blade

response data will give further detail on the effect of the NMA-NNME-λFEM method.

Figure 4.25 shows the NMA-λFEM and NMA-NNME-λFEM results at the NMA-NNME-

λFEM predicted peak frequency, 4332 Hz., and the FEM results at its predicted peak fre-

quency for M11, 4331 Hz. Unlike the results of Figure 4.7, the NMA-NNME predicts the

mistuning pattern accurately. Because the NMA-NNME predicted the peak frequency and

predicted the blade-to-blade mistuning sequence it is appears that NMA-NNME is a qual-

itative improvement over NMA-λFEM for M11. There is still uncertainty to whether this

is an effect of error introduced by the non-nominal mode expansion or an actual physics-

based improvement in the method. Analysis of M13 will provide further data to make a

conclusion.

Figure 4.26 shows the NMA-λFEM and NMA-NNME-λFEM maximum rotor response

results at M13, and its FRF shows the same form as that predicted with NMA-λFEM . The

predicted peak amplitude has dropped from 0.01716 in. to 0.01638 in., representing a

reduction of error from 18% to 13% when compared to the FEM results. It is also observed

that the error with the NMA-NNME-λFEM method increased at the large peak at 4868

Hz. Analysis of predicted blade-to-blade response data gives further insight to the NMA-

NNME-λFEM solution.

Figure 4.27 compares the blade-to-blade response of NMA-λFEM and NMA-NNME-

λFEM prediction at the full FEM predicted maximum response frequency. The improve-

ment in predicted maximum response is seen at blade 9 while there is an even larger im-

provement in the prediction of the blade 15 response. There are signif cant improvements

162



at blades 3, 5, and 6 which are low response modes. While not demonstrating itself as a

quantitative tool, there is an improvement with NMA-NNME-λFEM . Because this f gure

shows improvements at several blades without signif cant increases in error at any blade,

indicates that the NMA-NNME-λFEM has enabled a physics-based improvement. A f nal

mode is analyzed to support this conclusion.

Figure 4.28 compares the maximum rotor response results at M17 using NMA-λFEM

and NMA-NNME-λFEM . Peak amplitude predicted by NMA-NNME-λFEM has dropped

from 0.01304 in. with NMA-λFEM to 0.01190 in., a reduction in overprediction of the FEM

results from 18% to 7.4%. The NMA-NNME-λFEM approach is still clearly overpredicting

the second FRF peak, but by a smaller percentage than NMA-λFEM . Error does increase

with the NMA-NNME-λFEM away from the peak response at the 6300 Hz. Despite this,

because of the reduction in error at the peak response, the results indicate an improvement

in predictive accuracy. The blade-to-blade results provide more insight to the M17 results.

Figure 4.29 shows the blade-to-blade response predictions for the three methods at the

FEM predicted maximum response frequency. The NMA-NNME-λFEM solution shows

improved results at blades 11, 13 and 15. There are also decreases in accuracy using NMA-

NNME-λFEM , notably at airfoils 7-10. Accuracy at the peak responding blade 2 was not

appreciably changed nor has the approach enable the correct prediction of the mistuning

sequence. For M17 use of NMA-NNME-λFEM has not rigorously demonstrated that any

reduction in errors are from physics-based improvements to the model.

It is concluded that the NMA-NNME-λFEM approach is an improvement in nominal-

mode predictions for some modes but, given the remaining errors and uncertainties in

physics-based improvements, does not move the approach beyond a qualitative tool. The

additional expense in computing the perturbed C-B matrix is therefore not necessarily com-

pensated by a suff cient improvement in result. Its use would be dependent on cost to

implement and the need for some level of qualitative improvement.
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Abrief analysis of the CMS results is included to identify the cause of the remaining error

in the NMA-NNME-λFEM solution. The NMA-NNME-λFEM approach is based on the

assumption that the predicted C-B basis eigenvectors, q, are not impacted by the difference

between nominal and non-nominal basis vectors. To investigate this, Figure 4.30 plots the

M13 cantilever blade mode participation of blade 9 for the nominal and non-nominal mode

CMS solutions. It is noted that the order of the modes in the plot is inverted, i.e. the 50th

mode is the 1st blade mode. It is seen that both approaches predict the same general trend of

modal participation values, but with variations in magnitude. These variations in magnitude

are the cause of the remaining error between in the NMA-NNME approach and full model

result. This shows that for more accurate predictions, the non-nominal mode shape effects

should be accounted for in the C-B basis eigenproblem, not just the expansion phase.

4.3.4 Non-Nominal Mode Approach with

Geometrically-Perturbed FEM Mode Shapes

This section shows results for the NNMA method developed in Section 4.2.2.4. This rep-

resents the most accurate approach and, as will be described in Section 4.4, is more com-

putational expensive than the other approximate methods. Each airfoils substructure is

constructed with geometrically-perturbed FEM modal results for both nominal and con-

straint modes and the coupled solution is expanded in the non-nominal domain. To achieve

near exact prediction of the FEM response, the NNMA results here were based on retaining

200 disk modes and 50 airfoil modes.

Figure 4.31 shows the NNMA maximum rotor response solution compared to the FEM

and a near perfect f t is seen across the frequency range of interest. More detailed FRF

results are shown for M11, M13, and M17 in the remainder of this subsection that show the

accuracy of NNMA.
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Figure 4.32 provides the more detailed rotor results at M11. The predicted peak using

NNMA is 0.01188 in. which is a 0.03% difference between it and the FEM predicted peak.

There are small errors at the two peaks adjacent to the maximum peak and these are both

below 2.5 % error. Figure 4.33 shows the blade-to-blade amplitude results at the peak reso-

nant condition, the same for both predictions, and the mistuning pattern is clearly predicted

accurately.

Figure 4.34 shows the maximum rotor response results at M13 and again the NNMA

predicted peak is 0.01469 in. which is a 1% over prediction of the FEM results. Though

not shown, the blade-to-blade results show accurate prediction of the mistuning pattern.

Figure 4.35 shows the maximum rotor response result for M17 and again the NNMA

predicted amplitude is 0.01121 in., an overprediction of 1%. As with the other modes,

blade-to-blade predicted mistuning patterns are predicted accurately. This section demon-

strates the excellent accuracy of the NNMA method and the usage of explicit geometric

measurements to accurately predict mistuned response.

While there is a signif cant reduction in solution time compared to a IBR FEM, there is a

signif cant increase in solution time compared to nominal mode approaches. The following

section describes the results of using approximate frequency and mode shape predictions

for airfoil substructures. This approach will reduce computational cost of NNMA with an

impact on accuracy described in the following section.

4.3.5 Geometric Component Mode Mistuning with Approximate

Perturbed Mode Shapes

This section demonstrates the approximation of the airfoil substructure non-nominal mode

shapes as described in Subsection 4.2.2.5. This is annotated as NNMA-λa-φa. This ap-

proximation reduces the solution time required for mistuned response prediction but may

165



negatively impact accuracy.

Initial application of approximate mode shapes to the C-B matrix led to computational

errors that required modif cation of the algorithm. The computational errors were caused

by the approximate mode shapes leading to a non-positive def nite mass matrices, specif-

ically from the off-diagonal submatrices of the reduced mass matrix generated from Eq.

4.50. An investigation was conducted to determine and eliminate the errors, beginning

with quantifying the accuracy of the mode shape approximations.

The Modal Assurance Criterion (MAC) is used to show the accuracy of the mode shape

approximations. The MAC is calculated

MACnb,nm
=

(

φ̃Tnb,nm
φnb,nm

)2

(

φ̃Tnb,nm
φ̃Tnb,nm

)

(

φTnb,nm
φTnb,nm

)

(4.53)

where φ̃nb,nm
and φnb,nm

are the approximate and FEM mode shapes. The MAC gives a

scalar value that quantif es the linear relationship between the two vectors, 0 for orthogonal

vectors and 1 for identical vectors. The MAC plot for the modal approximations for each

of the 16 airfoils for the f rst twenty modes is shown in Figure 4.36. The MAC values are

shown as a matrix of shaded boxes with their values shown by the contour bar. It is seen

that very good accuracy is achieved with the approximations with no MAC value lower

than 0.991. Conversely, Figure 4.37 shows the MAC values for modes 21-40. Here we see

signif cant errors for several of the modes including 22, 32, and 33. It is not unexpected

that approximation accuracy degrades at high frequency mode shapes as it was shown in

Chapter 2 that approximation error increases with increasing mode.

To remove the approximation error at higher order modes, in this case those between 21

and 50, a nominal mode approximation for those modes is used. This hybrid approach uses

non-nominal approximations for modes 1-20 and nominal mode approximation between 21

and 50. Because the modal participation for each substructure in the high order modes is
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very small, shown in Figure 4.30, the nominal mode approximation should not signif cantly

impact the solution.

With the hybrid approach, there are still numerical errors with the approximate mode

shapes that give non-positive def nite substructure mass matrices. The approximate mode

shapes are only approximately mass normalized and approximately orthogonal with respect

to the substructure mass and stiffness matrices. Transforming the substructure matrices to

the reduced modal space therefore introduces off diagonal terms into the reduced matrices

that are not present when using the true substructure mode shapes. Reorthogonalizing the

approximate vectors with respect to each other is possible with a Gramm-Schmitt approach

but this may substantially change the mode shapes so that they no longer represent an

eff cient basis set.

Modif cation are made to the method in Subsection 4.2.2.5 to correct for the use of

approximately mass normalized and orthogonal mode shapes. First, the approximatemodes

shapes are mass normalized with respect to the mass matrix with the scale factor

snb,nm
=

√

1

φ̃Tnb,nm
Mnb

φ̃nb,nm

(4.54)

for each airfoil mode. Figure 4.38 illustrates the lack of approximate mode mass normality

for an airfoil substructure transformed mass matrix. The f gure is a 3-D bar chart that

shows the value of the reduced mass matrix using the f rst 20 approximate modeshapes.

Mass normalized vectors would give a diagonal of ones, while it can be clearly seen at

modes 16 and 17 values that exceed this. It can also bee seen in the f gure that off diagonal

terms, particularly at the modes 16 and 17, have non-zero values that would be expected

if the approximate mode shape were orthogonal with respect to the stiffness and mass

matrix. Because of the approximate mode shape’s lack of orthogonality, mii is assumed

to be the expected identity matrix. The kii matrix is also created from the approximate
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frequency predictions, ωa, rather than the use of the approximate mode shapes to transform

the stiffness matrix to the modal basis. Given these modif cation, the solution can be carried

out across the frequency range of interest.

Figure 4.39 displays the FRF predicted from NMA-λa and NNMA-λa-φa for M11.

The NNMA-λa-φa overpredicts maximum mistuned response by 0.5%, compared to the

NMA-λa underprediction of 2.9%. Several other peaks are more accurately predicted with

NNMA-λa-φa, including the f rst, second, fourth, ninth and tenth peaks. Other peaks are

nearly unaffected, including the sixth and eleventh peak. It is also noted that inclusion of

the approximate non-nominal modes has not reduced the error at the sixth peak, indicating

that its error could be largely driven by the error in the approximate frequency input. The

M11 results give evidence that the NNMA-λa-φa approach is quantitatively more accurate

than NMA-λa.

The results in Figure 4.39 include errors from both frequency and mode shape approxi-

mations. To remove this confounding effect, the exact FEM frequencies, ωFEM , are used

with the approximate non-nominal mode shapes for the M11 results in Figure 4.40. The

f gure shows excellent NNMA-λFEM -φa FRF peak predictions across the frequency range

with some overprediction at the two highest peaks. The f rst, third, fourth, f fth, sixth,

ninth and tenth peaks are all predicted more accurately when compared with the NMA-

λFEM results. The result at the sixth peak shows the most encouraging results, with the

NNMA-λFEM-φa predicting the peak within .002%. Conversely, the non-nominal mode

approach has increased prediction error at the eighth peak. Given that all other peaks are

more accurately predicted, the NNMA-λFEM-φa is a quantitative improvement compared

to NMA-λFEM .

A f nal analysis of M11, Figure 4.41, compares the predicted response using the approx-

imate frequencies, ωa, and both approximate non-nominal modes and FEM non-nominal

modes. The plot isolates the error introduced by the approximate non-nominal mode shapes
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given the ωa frequencies. In all but one peak, the difference between the solutions is very

small, only the second largest peak shows an appreciable difference. This demonstrates

the effectiveness of approximate non-nominal mode shapes and gives evidence that accu-

rate frequency approximation methods are more critical to accurate mistuning modeling.

Analysis of the remaining modes gives further evidence on usage of approximate non-

nominal mode shapes.

Figure 4.42 displays the FRF predicted from the NMA-λa compared to the NNMA-λa-

φa for M13. For this mode there is a more signif cant difference between predicted FRFs,

with the nominal mode approach predicting a single dominant peak while the non-nominal

approach predicts two nearly equal peaks. NNMA-λa-φa underpredicts the maximum am-

plitude by 9.0% while NMA-λa overpredicts by 12.8%. Before considering these results

further, the solution is performed using the exact frequencies.

Figure 4.43 illustrates the NNMA-λFEM-φa and NMA-λFEM solutions. A signif cant

improvement using the NNMA-λa-φa is shown. Rotor mistuned amplif cation error is re-

duced from the NMA-λFEM value of 18.0% to 4.3%. At the second large response peak at

4867 Hz. NMA-λFEM shows 22.4% underprediction while the NNMA-λFEM-φa reduces

error to an overprediction of 4.7%. When accurate frequencies are supplied to the NNMA-

λFEM -φa and NMA-λFEM approaches, the improvement in the non-nominal approach is

clear. These results reinforce the importance of accurate frequency approximation and the

value of approximate non-nominal mode shape results.

To continue investigating the error caused by the approximate non-nominal mode shapes,

the results using λa with both approximate non-nominal, φa, and FEM non-nominal mode

shapes, φFEM , are shown in Figure 4.44. It is seen that use of the FEM non-nominal mode

shapes increases underprediction of the FEM response, just as with use of the approximate

non-nominal mode shapes. Use of the FEM non-nominal mode shapes underpredicted

FEM results by to 8.7%. The NNMA-λa-φa results closely match the NNMA-λa-φFEM
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results whereas the NMA-λa results in Figure 4.42 signif cantly overpredict them. Again,

this shows the importance of accurate frequency input for mistuning modeling. A f nal

mode is investigated to demonstrate the capabilities of NNMA-λa-φa.

Figure 4.45 shows the FRF predicted from NNMA-λa-φa for M18 compared with NMA-

λa. Though there is a increase in overprediction, 21.0% versus 14.3% for NMA-λa, it

demonstrates an improved ability to predict the magnitude of the second peak at 6448

Hz. which the NMA-λa overpredicted by 44.0%. The NNMA-φa overpredicts the second

peak by 5.2%. These encouraging results are followed by the assessment using the actual

frequencies, ωFEM , with the solution approaches.

When the exact FEM frequencies are used in the NNMA-λFEM-φa solution, Figure 4.46,

the prediction in peak rotor response drops to 18.0% and the second peak prediction error

drops to 2.4%. The NMA-λFEM error, Figure 4.14, increase to 18% and overpredict the

second peak by 59.2%. As demonstrated in M11 and M13, use of the actual airfoil fre-

quencies and approximate non-nominal mode shapes more accurately predicted response

than NMA-λFEM .

Finally, Figure 4.47 shows the FRF results with λa for both NNMA-φa and NNMA-

φFEM . Use of the FEM mode shapes with the approximate frequencies shows and im-

provement in accuracy with overprediction dropping to 10.5%. The results do show, when

compared to the NMA-λaresults in Figure 4.45 that NNMA-λa-φa more accurately predicts

to FEM force response result.

Use of approximate non-nominal mode shapes in the construction of airfoil substructure

C-B matrices signif cantly improves the accuracy of the mistuning prediction when com-

pared to nominal mode approximation. It is found that the error in approximate frequencies

plays the largest role in accuracy. This shows that future efforts should focus on improved

frequency approximation. This reduces the challenge since the approximation of frequency,

a scalar, is not as complex as approximation of mode shape, a vector. While not as accurate
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as using exact FEM frequencies and mode shapes shown in the previous section but, in sit-

uations where computational speed may be desired over accuracy, the approximate method

should be considered for application.

4.4 Computational Time

Figure 4.48 illustrates the time required for three mistuning solution approaches, FEM,

C-B CMS, and approximate C-B CMS . Results are from the extraction of 100 mistuned

modes which enables prediction of approximately a 1,000 Hz. range of frequency. As more

mistuned modes are extracted the coupled substructure solution becomes a more signif cant

portion of the CMS solution and eventually dominates the airfoil substructure solution. In

practical applications, detailed analysis of a critical mode region would look at a relatively

small range, which the 1,000 Hz. range of this solution time comparison considers. Each

result is normalized by the total FEM solution time. The results do not include the time

to construct the reduced disk substructure, which is similar in time to the FEM solution if

the full rotor disk model is used. It’s inclusion in the CMS solution times makes a single

mistuning calculation with CMS unattractive. This computational cost is greatly reduced

when a cyclically symmetric disk sector is used to generate the reduced disk substructure

model. In either case, the purpose of the developed C-B models is for multiple mistuning

pattern solutions and with each iteration the solution time of the reduced disk substructure

becomes less signif cant. With these assumptions, the CMS solution showed a 50% reduc-

tion in solution time while the approximate C-B CMS solution showed a 69% reduction.

The C-B solution time results show that the construction time for airfoil substructures

is nearly equal to the coupled substructure modal solution. This demonstrates the value

of using reduced-order methods for their computation. The results showed the need for

improved approximation methods for airfoil substructures, but in there absence there are
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still approaches to reduce airfoil substructure solution time. First, the CMS approach is well

suited for parallel processing and each airfoil substructure can be solved independently on a

separate node. Second, once these substructures are created, they can be reused in alternate

mistuning patterns by rotating the substructures to different rotor locations.

Though signif cantly more eff cient that a FEM solution, the solution time of the CMS

methods are substantially larger than nominal-mode mistuning methods. The larger cost

is cause by the retention of a large number of airfoil modes (50), disk modes (200), and

the C-B assumption on constraint modes. In prior mistuning efforts a much smaller num-

ber of airfoils modes is considered, typically a single mode shape and much reduced set

of disk modes. Use of fewer modes in the geometrically perturbed rotor problem showed

signif cant errors in the prediction which were deemed unacceptable. A detailed conver-

gence study would be valuable to determine appropriate levels of mode retention given an

allowable error budget. The need to retain the large number of modes demonstrates how

mistuning impacts the mode shapes at the system level and is not simply a summation of a

small set of retained modes.

Computational time could also be reduced by investigating the use of alternate constraint

mode methods such as employed by REDUCE. In REDUCE, the constraint modes are

found from the displacements on a massless airfoil models from the disk mode shapes.

While the original results from REDUCE showed that this approach resulted in overly

stiff response, it is possible that the inclusion of substantially more disk-induced constraint

modes would reduce this effect. Reduction of constraint modes is an area worthy of further

work.
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4.5 Conclusions

Reduced-order methods have been developed that rapidly predict mistuned rotor response

by approximating mistuning with a nominal-mode basis and airfoil modal stiffness pertur-

bation. Nominal-mode approximation assumes that the geometry of each airfoil is identi-

cal and the geometric perturbations that alter modal stiffness do not perturb mode shape.

This work investigates the accuracy of that approximation and develops several Compo-

nent Mode Synthesis based reduced-order mistuning models that explicitly account for

geometric deviations using both nominal and non-nominal mode shape approaches. The

f rst represents the prevailing industry method and uses nominal-mode substructure reduc-

tion with airfoil substructure modal stiffnesses perturbed using geometrically-perturbed

cantilevered airfoil f nite element models. This approach demonstrates effective quali-

tative predictions that identify relative mistuning amplif cation but, when compared to

analytical results from a geometrically-perturbed integrally bladed rotor model, shows

signif cant (∼20%) errors in maximum predicted mistuning amplif cation. For blade-to-

blade response prediction at specif c frequencies, dramatic (>100%) errors are demon-

strated. The second approach uses nominal-mode substructure reduction and mistuned

airfoil modal stiffness perturbations from reduced-order modal methods. The reduced-

order airfoil model reduces computational time while enabling qualitative mistuning pre-

diction. The third method uses nominal-mode substructure reduction, mistuned modal stiff-

nesses from geometrically-perturbed airfoil f nite element models, and expands results with

a non-nominal Craig-Bampton matrix for each airfoil. Though improvements in quantita-

tive prediction of maximum response frequency and response amplitudes are found for all

modes, the method was inconsistent. The fourth approach uses non-nominal mode sub-

structure reduction and expansion using non-nominal Craig-Bampton matrices generated

from geometrically-perturbed f nite element models. This approach demonstrates excellent
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prediction of peak mistuning amplif cation and blade-to-blade response with prediction er-

rors below 1%. A f fth approach uses reduced-order modal methods to approximate the

non-nominal Craig-Bampton matrices. Use of these approximate mode shapes is found to

signif cantly improve accuracy compared to the nominal-mode assumption but that overall

performance is dominated by accurate frequency approximation. It is concluded that for

rapid qualitative analysis, nominal-mode mistuning analysis with approximate mistuned

modal stiffnesses should be used, for improved accuracy with additional computational ex-

pense approximate non-nominal mode mistuning analysis should be used, and with greater

solution time and need for quantitative accuracy, geometrically perturbed f nite element

model results should be used in non-nominal Craig-Bampton reduction and expansion.
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Mode Hz. Mode Hz.
1 370.72 11 4320.8
2 1118.8 12 4660.5
3 1230.4 13 4820.2
4 1833.3 14 4914.6
5 2029.0 15 5454.1
6 2432.9 16 6315.8
7 2800.4 17 6449.1
8 3159.7 18 6627.1
9 3423.9 19 6799.8
10 3610.3 20 6989.‘

Table 4.1: ADLARF Nominal Airfoil Frequencies
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Figure 4.1: ADLARF Rotor
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Figure 4.2: Geometrically Perturbed Airfoil Substructure (100x Magnif cation)
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Figure 4.3: ADLARF Rotor FEM
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Figure 4.4: ADLARF Model Aft Flange Boundary Conditions
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Figure 4.5: NMA- λFEM versus FEM Maximum Forced Response Prediction
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Figure 4.6: NMA -λFEM versus Full Model Maximum Forced Response - Mode 11
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Figure 4.7: Blade-to-Blade Response at Maximum Response at Peaks - Mode 11
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Figure 4.8: Blade-to-Blade Response at Maximum Response at 4319 Hz. - Mode 11
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Figure 4.9: Blade-to-Blade Response at Maximum Response at 4331 Hz. - Mode 11
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Figure 4.10: NMA- λFEM versus Full Model Maximum Forced Response - Mode 13
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Figure 4.11: Blade-to-Blade Response at Maximum Response at Peaks- Mode 13
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Figure 4.12: Blade-to-Blade Response at Maximum Response at 4794 Hz. - Mode 13
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Figure 4.13: Blade-to-Blade Response at Maximum Response at 4797 - Mode 13
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Figure 4.14: NMA- λFEM versus Full Model Maximum Forced Response - Mode 17
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Figure 4.15: Blade-to-Blade Response at Maximum Response at Peaks - Mode 17
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Figure 4.16: Blade-to-Blade Response at Maximum Response at 6474 Hz. - Mode 17
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Figure 4.17: Blade-to-Blade Response at Maximum Response at 6480 - Mode 17
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Figure 4.18: Modal Stiffness Approximation Results - Mode 11
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Figure 4.19: Comparison of Approximate NMA Approaches - Mode 11
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Figure 4.20: Modal Stiffness Approximation Results - Mode 13
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Figure 4.21: Comparison of NMA Approaches - Mode 13
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Figure 4.22: Modal Stiffness Approximation Results - Mode 17
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Figure 4.23: Comparison of NMA Approaches - Mode 17
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Figure 4.24: Comparison of NMA-λFEM and NMA-NNME-λFEM Results - Mode 11
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Figure 4.25: Blade-to-Blade NMA-λFEM versus NMA-NNME-λFEM Results - Mode 11
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Figure 4.26: NMA-λFEM versus NMA-NNME-λFEM Maximum Forced Response
Results- Mode 13
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Figure 4.27: NMA-λFEM versus NMA-NNME- λFEM Blade-to-Blade Results - Mode 13
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Figure 4.28: NMA-λFEM versus NMA-NNME-λFEM Maximum Forced Response Results
- Mode 17
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Figure 4.29: NMA-λFEM versus NMA-NNME-λFEM Blade-to-Blade Results - Mode 17
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Figure 4.30: CMS Ak Vector Nominal vs. Non-Nominal - Blade 9 - M13
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Figure 4.31: NNMA versus FEM Maximum Forced Response Results
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Figure 4.32: NNMA versus FEM Maximum Forced Response Results- Mode 11
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Figure 4.33: Blade-to-Blade NNMA Response Comparison at Maximum Response- Mode
11
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Figure 4.34: NNMA versus FEM Maximum Forced Response - Mode 13
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Figure 4.35: NNMA versus FEM Maximum Forced Response - Mode 17
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Figure 4.36: Approximate Mode Shape MAC Values (Modes 1-20)
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Figure 4.37: Approximate Mode Shape MAC Values (Modes 21-40)
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Figure 4.39: NNMA-λa-φa versus NMA-λaMaximum Forced Response Results- Mode 11
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Figure 4.40: NNMA-λFEM-φa versus NMA-λFEM Maximum Forced Response Results-
Mode 11
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Figure 4.41: NNMA-λa-φa versus NNMA-λa-φFEM Maximum Forced Response Results-
Mode 11
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Figure 4.42: NNMA-λa-φa versus NMA-λaMaximum Forced Response Results- Mode 13
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Figure 4.43: NNMA-λFEM-φa versus NMA-λFEM Maximum Forced Response Results-
Mode 13
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Figure 4.44: NNMA-λa-φa, versus NNMA-λa-φFEM Maximum Forced Response Results-
Mode 13
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Figure 4.45: NNMA-λa-φa versus NMA-λaMaximum Forced Response Results- Mode 18
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Figure 4.46: NNMA-λFEM-φaversus NMA-λFEM Maximum Forced Response Results-
Mode 18
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Figure 4.47: NNMA-λa-φa, versus NNMA-λa-φFEM Maximum Forced Response Results-
Mode 18
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5 Conclusion

Design of structural components is constrained by both iteration time and prediction uncer-

tainty. Iteration time refers to the computation time each simulation requires and controls

how much of the design space can be explored given a f xed period. A comprehensive

search of the space leads to more optimum designs. Prediction uncertainty refers to both ir-

reducible uncertainties, such as caused by material scatter, and reducible uncertainty, such

as simulation error of the physics-based model. In the presence of uncertainty, conservative

safety factors and design margins are used to ensure reliability, but these negatively impact

component weight and design life. This research investigated three areas to improve both

iteration time and model uncertainty quantif cation for turbomachinery design.

The f rst developed an error-quantif ed reduced-order model that predicts the effect of

geometric deviations on airfoil forced response. The model is composed of a Taylor series

expansion using f rst-order semi-analytical sensitivities and a linear regression of a discrep-

ancy measure onto airfoil geometric parameters. The discrepancy measure consisted of a

comparison between the Taylor series approximation and the full f nite element model re-

sult of a small set of training models. This error-quantif ed approximation shows signif cant

improvements in accuracy compared to existing methods, because of its bias correction and

description of random error. The results of this model were used later in the dissertation

as input into the non-nominal mode mistuning model. Several areas of future research are

possible,
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1. Demonstration of model error quantif cation through linear regression of discrepancy

to design parameters for a wider range of problems,

2. Development of an model error quantif cation approach for vector quantities,

3. Improved modal and forced response approximation through higher order sensitivi-

ties,

4. Improved modal and forced response approximation through gradient Kriging,

5. Application model error quantif cation approach on discrepancy between model and

empirical results.

The second research area developed a Probabilistic Gradient Kriging approach to eff ciently

model the failure probability prediction uncertainty caused by small sample statistics. It

was shown that the Probabilistic Gradient Kriging approach is signif cantly more accurate

for a given number of training points when compared to conventional Kriging and poly-

nomial regression approaches. It was found that statistical uncertainty from small sample

sizes leads to orders of magnitude variation in predicted failure probabilities. Several areas

of future research are possible,

1. Use of higher order sensitivities in the PGK approximation,

2. Demonstration of PGK as a surrogate surface for reliability optimization,

3. Develop approach to use initial set of training site function values and gradients to

select new sites in likely regions of interest,

4. Apply gradient Kriging to other engineering problems, e. g. airframe structures and

aerodynamics,
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5. Develop a new surface approximation approach that uses gradients and function val-

ues, but does not require the assumptions of a Gaussian stochastic process,

The third research area developed non-nominal and nominal mode Component Mode Syn-

thesis methods for reduced-order modeling of the geometric effects on rotor mistuning.

Existing reduced-order methods approximate mistuning with a nominal-mode, or design

intent, basis and airfoil modal stiffness perturbation. This assumption introduces a quan-

tif able error. It is shown that the nominal-mode approach can produce signif cant errors

whereas the non-nominal approach accurately predicts blade-to-blade mistuned response.

Several areas of future research are possible,

1. Use of GPM CMM to determine manufacturing tolerances, both large and small, that

reduce mistuned response,

2. Compare the predicted distribution of mistuned response from nominal mode and

non-nominal mode methods to determine if qualitative ability of nominal method is

suff cient for probabilistic analysis,

3. Incorporate disk-induced constraint modes as an approach to reduce the quantity of

interface DOF,

4. Compare GPM CMM approach to the MMDA method,

5. Experimental study of geometric mistuning.
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